咨询与建议

限定检索结果

文献类型

  • 467 篇 期刊文献
  • 61 篇 会议

馆藏范围

  • 528 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 理学
    • 118 篇 物理学
    • 102 篇 生物学
    • 98 篇 数学
    • 61 篇 化学
    • 54 篇 统计学(可授理学、...
    • 20 篇 系统科学
    • 16 篇 地球物理学
    • 15 篇 天文学
  • 307 篇 工学
    • 112 篇 计算机科学与技术...
    • 93 篇 软件工程
    • 50 篇 生物工程
    • 49 篇 化学工程与技术
    • 49 篇 生物医学工程(可授...
    • 40 篇 材料科学与工程(可...
    • 38 篇 电子科学与技术(可...
    • 31 篇 力学(可授工学、理...
    • 31 篇 电气工程
    • 25 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 21 篇 光学工程
    • 15 篇 动力工程及工程热...
    • 14 篇 仪器科学与技术
    • 14 篇 环境科学与工程(可...
    • 13 篇 冶金工程
  • 72 篇 医学
    • 48 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 38 篇 农学
    • 17 篇 作物学
  • 38 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 5 篇 经济学
  • 4 篇 法学
  • 4 篇 教育学
  • 3 篇 文学
  • 1 篇 军事学

主题

  • 13 篇 machine learning
  • 10 篇 gravitational wa...
  • 7 篇 deep learning
  • 6 篇 density function...
  • 5 篇 cancer
  • 5 篇 galaxies
  • 5 篇 diffusion
  • 5 篇 mean square erro...
  • 5 篇 fluid structure ...
  • 5 篇 diseases
  • 5 篇 gravitational wa...
  • 5 篇 molecular dynami...
  • 5 篇 dynamics
  • 4 篇 speech
  • 4 篇 computational mo...
  • 4 篇 predictive model...
  • 4 篇 gene expression
  • 4 篇 tumors
  • 4 篇 gravitational wa...
  • 3 篇 x ray crystallog...

机构

  • 17 篇 applied mathemat...
  • 15 篇 institute for pl...
  • 14 篇 university of so...
  • 13 篇 department of ph...
  • 12 篇 department of as...
  • 12 篇 scuola di ingegn...
  • 12 篇 infn sezione di ...
  • 12 篇 dipartimento di ...
  • 12 篇 università degli...
  • 12 篇 infn trento inst...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 advanced technol...
  • 11 篇 physik-institut ...
  • 11 篇 king’s college l...
  • 11 篇 department of ph...

作者

  • 23 篇 jasra ajay
  • 12 篇 r. takahashi
  • 12 篇 j. c. bayley
  • 12 篇 k. komori
  • 12 篇 t. kajita
  • 12 篇 f. hellman
  • 12 篇 m. kinley-hanlon
  • 12 篇 t. mcrae
  • 12 篇 a. parisi
  • 12 篇 t. sawada
  • 12 篇 s. rowan
  • 12 篇 s. m. aronson
  • 12 篇 v. p. mitrofanov
  • 12 篇 g. moreno
  • 12 篇 g. hemming
  • 12 篇 p. fritschel
  • 12 篇 c. kim
  • 12 篇 f. muciaccia
  • 12 篇 b. garaventa
  • 12 篇 d. p. kapasi

语言

  • 503 篇 英文
  • 21 篇 其他
  • 3 篇 中文
检索条件"机构=Computational Sciences and Engineering Program"
528 条 记 录,以下是221-230 订阅
排序:
Cell2Sentence: teaching large language models the language of biology  24
Cell2Sentence: teaching large language models the language o...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Daniel Levine Syed Asad Rizvi Sacha Lévy Nazreen Pallikkavaliyaveetil David Zhang Xingyu Chen Sina Ghadermarzi Ruiming Wu Zihe Zheng Ivan Vrkic Anna Zhong Daphne Raskin Insu Han Antonio Henrique De Oliveira Fonseca Josue Ortega Caro Amin Karbasi Rahul M. Dhodapkar David Van Dijk Department of Computer Science Yale University New Haven CT School of Engineering Applied Science University of Pennsylvania Philadelphia PA School of Computer and Communication Sciences Swiss Federal Institute of Technology Lausanne Lausanne Switzerland Department of Computer Science Yale University New Haven CT and Department of Neuroscience Yale School of Medicine New Haven CT Department of Computer Science Yale University New Haven CT and Department of Neuroscience Yale School of Medicine New Haven CT and Wu Tsai Institute Yale University New Haven CT Google and Yale Institute for Foundations of Data Science New Haven CT and Department of Computer Science Yale University New Haven CT and Yale School of Engineering and Applied Science New Haven CT Roski Eye Institute University of Southern California Los Angeles CA and Department of Internal Medicine (Cardiology) Yale School of Medicine New Haven CT Department of Computer Science Yale University New Haven CT and Yale Institute for Foundations of Data Science New Haven CT and Wu Tsai Institute Yale University New Haven CT and Cardiovascular Research Center Yale School of Medicine New Haven CT and Interdepartmental Program in Computational Biology & Bioinformatics Yale University New Haven CT and Department of Internal Medicine (Cardiology) Yale School of Medicine New Haven CT
We introduce Cell2Sentence (C2S), a novel method to directly adapt large language models to a biological context, specifically single-cell transcriptomics. By transforming gene expression data into "cell sentence...
来源: 评论
On Performance Prediction of Big Data Transfer in High-performance Networks
On Performance Prediction of Big Data Transfer in High-perfo...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Wuji Liu Daqing Yun Chase Q. Wu Nageswara S.V. Rao Aiqin Hou Wei Shen Department of Computer Science New Jersey Institute of Technology Newark NJ USA Computer and Information Sciences Program Harrisburg University Harrisburg PA USA Computational Sciences and Engineering Division Oak Ridge National Laboratory Oak Ridge TN USA School of Information Science and Technology Northwest University Xi’an Shaanxi China School of Informatics Science and Technology Zhejiang Sci-Tech University Hangzhou Zhejiang China
Big data generated by large-scale scientific and industrial applications need to be transferred between different geographical locations for remote storage, processing, and analysis. High-speed dedicated connections p... 详细信息
来源: 评论
Core collapse supernova gravitational wave emission for progenitors of 9.6, 15, and 25M⊙
收藏 引用
Physical Review D 2023年 第4期107卷 043008-043008页
作者: Anthony Mezzacappa Pedro Marronetti Ryan E. Landfield Eric J. Lentz R. Daniel Murphy W. Raphael Hix J. Austin Harris Stephen W. Bruenn John M. Blondin O. E. Bronson Messer Jordi Casanova Luke L. Kronzer Department of Physics and Astronomy University of Tennessee 1408 Circle Drive Knoxville Tennessee 37996-1200 USA Physics Division National Science Foundation Alexandria Virginia 22314 USA National Center for Computational Sciences Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge Tennessee 37831-6164 USA Physics Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge Tennessee 37831-6354 USA Joint Institute for Nuclear Physics and its Applications Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge Tennessee 37831-6374 USA Department of Physics Florida Atlantic University 777 Glades Road Boca Raton Florida 33431-0991 USA Department of Physics North Carolina State University Raleigh North Carolina 27695-8202 USA Physics Program Community College of Denver P.O. Box 173363 Denver Colorado 80217-3363 USA Department of Aerospace Engineering and Mechanics University of Alabama Box 870280 Tuscaloosa Alabama 35487-0280 USA
We present gravitational wave emission predictions based on three core collapse supernova simulations corresponding to three different progenitor masses. The masses span a large range, between 9.6 and 25M⊙, are all i... 详细信息
来源: 评论
Phage therapy
NATURE REVIEWS METHODS PRIMERS
收藏 引用
NATURE REVIEWS METHODS PRIMERS 2025年 第1期5卷 1页
作者: [Anonymous] Human Microbiome Research Program Department of Bacteriology and Immunology Faculty of Medicine University of Helsinki Helsinki Finland European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Non-traditional Antibacterial Therapy (ESGNTA) Basel Switzerland Institute of Biomedical and Oral Research (IBOR) Faculty of Dental Medicine Hebrew University of Jerusaleum Jerusalem Israel The Israeli Phage Center (IPTC) of the Hebrew University and Hadassah Medical Center Jerusalem Israel Department of Clinical Microbiology and Infectious Diseases Hadassah–Hebrew University Medical Center Jerusalem Jerusalem Israel Laboratory of Gene Technology Department of Biosystems KU Leuven Leuven Belgium Leicester Centre for Phage Research Department of Genetics and Genome Biology University of Leicester Leicester UK Center for Evolutionary Hologenomics Globe Institute University of Copenhagen Copenhagen Denmark Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio) AIMST University Bedong Kedah Malaysia Laboratory of Phage Molecular Biology Institute of Immunology and Experimental Therapy Wrocław Poland Wrocław University of Science and Technology Faculty of Medicine Wrocław Poland Department of Biological Sciences University of Pittsburgh Pittsburgh PA USA Laboratory for Molecular and Cellular Technology Queen Astrid Military Hospital Brussels Belgium Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland Chemical Engineering Department Loughborough University Loughborough UK
Bacteriophage (phages) are viruses that exclusively use bacterial cells for propagation, killing the bacterial host in the process. In phage therapy, phages are used to reduce bacterial numbers, thereby curing bacteri...
来源: 评论
Uncovering the HOXA9 Translational Regulatory Complex That Promotes AML Leukemic Stem Cells
收藏 引用
Blood 2024年 144卷 4106-4106页
作者: Xueqin Xie Florisela Herrejon Chavez Ilyes Baali Eren L. Chu Chiara Evans Xuejing Yang Wei Wei Hanzhi Luo Sun Mi Park Kathryn Chang Aspen Pierson Grace Han Emily Batchelor Quaid D. Morris Ly Vu Diu T.T. Nguyen Michael G. Kharas Molecular Pharmacology Program Memorial Sloan Kettering Cancer Center New York NY Memorial Sloan Kettering Cancer Center NY Weill Cornell Graduate School of Medical Sciences NY Memorial Sloan Kettering Cancer Center New York Molecular Pharmacology Program Center for Cell Engineering Center for Stem Cell Biology Center for Experimental Therapeutics Center for Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York City NY Memorial Sloan Kettering Cancer Center ny Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center New York Memorial Sloan-Kettering Cancer Center Vancouver Canada The University of British Columbia Vancouver Canada Simon Fraser University Vancouver Canada Center for Hemato-Oncology Barts Cancer Institute Queen Mary University of London London United Kingdom
HOXA9 is a master transcription factor of hematopoiesis and essential for maintaining self-renewal of leukemia stem cells (LSCs). Although mechanisms associated with its transcriptional regulation are extensively stud...
来源: 评论
A hybrid semi-Lagrangian cut cell method for advection-diffusion problems with robin boundary conditions in moving domains
arXiv
收藏 引用
arXiv 2021年
作者: Barrett, Aaron Fogelson, Aaron L. Griffith, Boyce E. Department of Mathematics University of Utah Salt Lake CityUT United States Departments of Mathematics and Bioengineering University of Utah Salt Lake CityUT United States Departments of Mathematics Applied Physical Sciences and Biomedical Engineering University of North Carolina Chapel HillNC United States Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina Chapel HillNC United States Computational Medicine Program University of North Carolina Chapel HillNC United States McAllister Heart Institute University of North Carolina Chapel HillNC United States
We present a new discretization approach to advection-diffusion problems with Robin boundary conditions on complex, time-dependent domains. The method is based on second order cut cell finite volume methods introduced... 详细信息
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Author Correction: Supervised learning of high-confidence phenotypic subpopulations from single-cell data
收藏 引用
Nature Machine Intelligence 2023年 676页
作者: Tao Ren Ling-Yun Wu Canping Chen Susan Liu Shunyi Du Zheng Xia Alexey V. Danilov Xiwei Wu Xiangnan Guan Mara H. Sherman Lisa M. Coussens Paul T. Spellman Andrew C. Adey Gordon B. Mills Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China Computational Biology Program Oregon Health & Science University Portland OR USA Department of Biomedical Engineering Oregon Health & Science University Portland OR USA Knight Cancer Institute Oregon Health & Science University Portland OR USA City of Hope National Medical Center Duarte CA USA Department of Oncology Biomarker Development Genentech Inc South San Francisco CA USA Department of Cell Developmental & Cancer Biology Oregon Health & Science University Portland OR USA Cancer Biology & Genetics Program Memorial Sloan Kettering Cancer Center New York NY USA Department of Molecular and Medical Genetics Oregon Health & Science University Portland OR USA Division of Oncological Sciences Knight Cancer Institute Oregon Health & Science University Portland OR USA
来源: 评论
Deep learning for drug repurposing: methods, databases, and applications
arXiv
收藏 引用
arXiv 2022年
作者: Pan, Xiaoqin Lin, Xuan Cao, Dongsheng Zeng, Xiangxiang Yu, Philip S. He, Lifang Nussinov, Ruth Cheng, Feixiong School of Computer Science and Engineering Hunan University China School of Computer Science Xiangtan University China Xiangya School of Pharmaceutical Sciences Central South University China Department of Computer Science University of Illinois at Chicago United States Department of Computer Science and Engineering Lehigh University United States Computational Structural Biology Section Basic Science Program Frederick National Laboratory for Cancer Research National Cancer Institute at Frederick FrederickMD21702 United States Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine Tel Aviv University Tel Aviv69978 Israel Genomic Medicine Institute Lerner Research Institute Cleveland Clinic ClevelandOH44195 United States Department of Molecular Medicine Cleveland Clinic Lerner College of Medicine Case Western Reserve University ClevelandOH44195 United States Case Comprehensive Cancer Center Case Western Reserve University School of Medicine ClevelandOH44106 United States
Drug development is time-consuming and expensive. Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs, specifically for Coronavirus Di... 详细信息
来源: 评论
Correction: Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia identifies subtype-specific chromatin landscapes and gene regulatory networks
收藏 引用
Leukemia 2024年 第8期38卷 1867页
作者: Jonathan D Diedrich Qian Dong Daniel C Ferguson Brennan P Bergeron Robert J Autry Maoxiang Qian Wenjian Yang Colton Smith James B Papizan Jon P Connelly Kohei Hagiwara Kristine R Crews Shondra M Pruett-Miller Ching-Hon Pui Jun J Yang Mary V Relling William E Evans Daniel Savic Hematological Malignancies Program and Center for Precision Medicine in Leukemia St. Jude Children's Research Hospital Memphis TN USA. Department of Pharmaceutical Sciences St. Jude Children's Research Hospital Memphis TN USA. Graduate School of Biomedical Sciences St. Jude Children's Research Hospital Memphis TN USA. Integrated Biomedical Sciences Program University of Tennessee Health Science Center Memphis TN USA. Department of Cell and Molecular biology and Center for Advanced Genome Engineering St. Jude Children's Research Hospital Memphis TN USA. Department of Computational Biology St. Jude Children's Research Hospital Memphis TN USA. Department of Oncology St. Jude Children's Research Hospital Memphis TN USA. Department of Pathology St. Jude Children's Research Hospital Memphis TN USA. Hematological Malignancies Program and Center for Precision Medicine in Leukemia St. Jude Children's Research Hospital Memphis TN USA. daniel.savic@***. Department of Pharmaceutical Sciences St. Jude Children's Research Hospital Memphis TN USA. daniel.savic@***. Integrated Biomedical Sciences Program University of Tennessee Health Science Center Memphis TN USA. daniel.savic@***.
来源: 评论