咨询与建议

限定检索结果

文献类型

  • 79 篇 期刊文献
  • 35 篇 会议
  • 3 册 图书

馆藏范围

  • 117 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 工学
    • 49 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 16 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 信息与通信工程
    • 10 篇 光学工程
    • 8 篇 电气工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 5 篇 电子科学与技术(可...
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 仪器科学与技术
    • 3 篇 环境科学与工程(可...
    • 2 篇 机械工程
    • 2 篇 土木工程
  • 68 篇 理学
    • 46 篇 数学
    • 22 篇 统计学(可授理学、...
    • 17 篇 物理学
    • 15 篇 生物学
    • 12 篇 系统科学
    • 5 篇 化学
    • 5 篇 地球物理学
  • 13 篇 管理学
    • 9 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 8 篇 医学
    • 7 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 5 篇 learning systems
  • 5 篇 machine learning
  • 4 篇 artificial intel...
  • 3 篇 reinforcement le...
  • 3 篇 learning algorit...
  • 2 篇 dynamical system...
  • 2 篇 e-learning
  • 2 篇 galaxies
  • 2 篇 sensitivity anal...
  • 2 篇 anomaly detectio...
  • 2 篇 information syst...
  • 2 篇 computer communi...
  • 2 篇 markov processes
  • 2 篇 information theo...
  • 2 篇 data mining and ...
  • 2 篇 data mining
  • 2 篇 database managem...
  • 2 篇 robots
  • 2 篇 learning
  • 2 篇 tensors

机构

  • 7 篇 department of co...
  • 5 篇 machine learning...
  • 5 篇 computational st...
  • 4 篇 department of co...
  • 4 篇 center for compu...
  • 4 篇 computational bi...
  • 4 篇 computational st...
  • 3 篇 department of st...
  • 3 篇 computational st...
  • 3 篇 informatics inst...
  • 3 篇 computational st...
  • 3 篇 centre inria de ...
  • 3 篇 computational st...
  • 3 篇 tübingen ai cent...
  • 3 篇 department of as...
  • 3 篇 department of co...
  • 3 篇 department of st...
  • 3 篇 vector institute
  • 3 篇 machine learning...
  • 3 篇 department of co...

作者

  • 33 篇 pontil massimili...
  • 14 篇 ciliberto carlo
  • 6 篇 shawe-taylor joh...
  • 5 篇 luise giulia
  • 5 篇 denevi giulia
  • 5 篇 melchior peter
  • 4 篇 maurer andreas
  • 4 篇 salzo saverio
  • 4 篇 john shawe-taylo...
  • 4 篇 franceschi luca
  • 4 篇 wasserman larry
  • 4 篇 roeder kathryn
  • 4 篇 grazzi riccardo
  • 4 篇 romera-paredes b...
  • 3 篇 bernhard schölko...
  • 3 篇 conti zack xuere...
  • 3 篇 ho shirley
  • 3 篇 zhang qian
  • 3 篇 dardeno tina a.
  • 3 篇 linguraru marius...

语言

  • 113 篇 英文
  • 4 篇 其他
检索条件"机构=Computational Statistics and Machine Learning"
117 条 记 录,以下是31-40 订阅
排序:
Schedule-Robust Online Continual learning
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Ruohan Ciccone, Marco Luise, Giulia Pontil, Massimiliano Yapp, Andrew Ciliberto, Carlo Singapore Politecnico di Torino Torino Italy Centre for Artificial Intelligence Department of Computer Science University College London United Kingdom Computational Statistics and Machine Learning Group Istituto Italiano di Tecnologia Genova Italy National University of Singapore Singapore
A continual learning (CL) algorithm learns from a non-stationary data stream. The non-stationarity is modeled by some schedule that determines how data is presented over time. Most current methods make strong assumpti... 详细信息
来源: 评论
Cosmology with Galaxy Photometry Alone
arXiv
收藏 引用
arXiv 2023年
作者: Hahn, ChangHoon Villaescusa-Navarro, Francisco Melchior, Peter Teyssier, Romain Department of Astrophysical Sciences Princeton University Peyton Hall PrincetonNJ08544 United States Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Center for Statistics & Machine Learning Princeton University PrincetonNJ08544 United States Program in Applied and Computational Mathematics Princeton University Fine Hall Washington Road PrincetonNJ08544-1000 United States
We present the first cosmological constraints using only the observed photometry of galaxies. Villaescusa-Navarro et al. (2022b) recently demonstrated that the internal physical properties of a single simulated galaxy... 详细信息
来源: 评论
The optical and infrared are connected
arXiv
收藏 引用
arXiv 2025年
作者: Jespersen, Christian Kragh Melchior, Peter Spergel, David N. Goulding, Andy D. Hahn, ChangHoon Iyer, Kartheik G. Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States Center for Statistics and Machine Learning Princeton University PrincetonNJ08544 United States Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Columbia University Columbia Astrophysics Lab 550 W 120th St New YorkNY10010 United States
Galaxies are often modelled as composites of separable components with distinct spectral signatures, implying that different wavelength ranges are only weakly correlated. They are not. We present a data-driven model w... 详细信息
来源: 评论
Atomic Filter: a Weak Form of Shift Operator for Graph Signals
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Lihua Zhang, Qing Zhang, Qian Huang, Chao School of Mathematics Sun Yat-sen University Guangzhou510275 China Guangdong Province Key Laboratory of Computational Science China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
The shift operation plays a crucial role in the classical signal processing. It is the generator of all the filters and the basic operation for time-frequency analysis, such as windowed Fourier transform and wavelet t... 详细信息
来源: 评论
The Role of Global Labels in Few-Shot Classification and How to Infer Them
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Ruohan Pontil, Massimiliano Ciliberto, Carlo Center for AI Department of Computer Science University College London London United Kingdom Institute of Infocomm Research A*STAR Singapore Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Genova Italy
Few-shot learning is a central problem in meta-learning, where learners must quickly adapt to new tasks given limited training data. Recently, feature pre-training has become a ubiquitous component in state-of-the-art... 详细信息
来源: 评论
A Novel ECG Signal Classification Algorithm Based on Common and Specific Components Separation  2nd
A Novel ECG Signal Classification Algorithm Based on Common ...
收藏 引用
2nd International Conference on Pattern Recognition and Artificial Intelligence, ICPRAI 2020
作者: Huang, Jianfeng Huang, Chao Yang, Lihua Zhang, Qian School of Financial Mathematics and Statistics Guangdong University of Finance Guangzhou China College of Mathematics and Statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Guangdong Province Key Laboratory of Computational Science School of Mathematics Sun Yat-sen University Guangzhou China
Electrocardiography (ECG) signal classification is a challenging task since the characteristics of ECG signals vary significantly for different patients. In this paper, we propose a new method for ECG signal classific... 详细信息
来源: 评论
Gravitational-Wave Parameter Estimation in non-Gaussian noise using Score-Based Likelihood Characterization
arXiv
收藏 引用
arXiv 2024年
作者: Legin, Ronan Isi, Maximiliano Wong, Kaze W.K. Hezaveh, Yashar Perreault-Levasseur, Laurence Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning MontréalQC Canada Department of Physics Université de Montréal MontréalQC Canada Mila - Quebec Artificial Intelligence Institute MontréalQC Canada Center for Computational Astrophysics Flatiron Institute New YorkNY United States Department of Applied Mathematics and Statistics Johns Hopkins University BaltimoreMD United States Trottier Space Institute MontréalQC Canada Perimeter Institute for Theoretical Physics WaterlooON Canada
Gravitational-wave (GW) parameter estimation typically assumes that instrumental noise is Gaussian and stationary. Obvious departures from this idealization are typically handled on a case-by-case basis, e.g., through... 详细信息
来源: 评论
Position: Bayesian Deep learning is Needed in the Age of Large-Scale AI  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Rationalising data collection for supporting decision making in building energy systems using Value of Information analysis
arXiv
收藏 引用
arXiv 2024年
作者: Langtry, Max Zhuang, Chaoqun Ward, Rebecca Makasis, Nikolas Kreitmair, Monika J. Conti, Zack Xuereb Di Francesco, Domenic Choudhary, Ruchi Energy Efficient Cities Initiative Department of Engineering University of Cambridge Trumpington Street CambridgeCB2 1PZ United Kingdom Data-Centric Engineering The Alan Turing Institute British Library LondonNW1 2DB United Kingdom School of Sustainability Civil & Environmental Engineering University of Surrey GuilfordGU2 7XH United Kingdom Computational Statistics & Machine Learning Department of Engineering University of Cambridge CambridgeCB3 0FA United Kingdom
The use of data collection to support decision making through the reduction of uncertainty is ubiquitous in the management, operation, and design of building energy systems. However, no existing studies in the buildin... 详细信息
来源: 评论
On the Iteration Complexity of Hypergradient Computation
arXiv
收藏 引用
arXiv 2020年
作者: Grazzi, Riccardo Franceschi, Luca Pontil, Massimiliano Salzo, Saverio Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Genoa Italy Department of Computer Science University College London London United Kingdom
We study a general class of bilevel problems, consisting in the minimization of an upper-level objective which depends on the solution to a parametric fixed-point equation. Important instances arising in machine learn... 详细信息
来源: 评论