咨询与建议

限定检索结果

文献类型

  • 79 篇 期刊文献
  • 34 篇 会议
  • 3 册 图书

馆藏范围

  • 116 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 工学
    • 49 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 16 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 信息与通信工程
    • 10 篇 光学工程
    • 8 篇 电气工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 5 篇 电子科学与技术(可...
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 仪器科学与技术
    • 3 篇 环境科学与工程(可...
    • 2 篇 机械工程
    • 2 篇 土木工程
  • 68 篇 理学
    • 46 篇 数学
    • 22 篇 统计学(可授理学、...
    • 17 篇 物理学
    • 15 篇 生物学
    • 12 篇 系统科学
    • 5 篇 化学
    • 5 篇 地球物理学
  • 13 篇 管理学
    • 9 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 8 篇 医学
    • 7 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 5 篇 learning systems
  • 5 篇 machine learning
  • 4 篇 artificial intel...
  • 3 篇 reinforcement le...
  • 3 篇 learning algorit...
  • 2 篇 dynamical system...
  • 2 篇 e-learning
  • 2 篇 galaxies
  • 2 篇 sensitivity anal...
  • 2 篇 anomaly detectio...
  • 2 篇 information syst...
  • 2 篇 computer communi...
  • 2 篇 markov processes
  • 2 篇 information theo...
  • 2 篇 data mining and ...
  • 2 篇 data mining
  • 2 篇 database managem...
  • 2 篇 robots
  • 2 篇 learning
  • 2 篇 tensors

机构

  • 7 篇 department of co...
  • 5 篇 machine learning...
  • 4 篇 department of co...
  • 4 篇 center for compu...
  • 4 篇 computational bi...
  • 4 篇 computational st...
  • 4 篇 computational st...
  • 3 篇 department of st...
  • 3 篇 computational st...
  • 3 篇 informatics inst...
  • 3 篇 computational st...
  • 3 篇 centre inria de ...
  • 3 篇 computational st...
  • 3 篇 tübingen ai cent...
  • 3 篇 department of as...
  • 3 篇 department of co...
  • 3 篇 department of st...
  • 3 篇 vector institute
  • 3 篇 machine learning...
  • 3 篇 department of co...

作者

  • 33 篇 pontil massimili...
  • 14 篇 ciliberto carlo
  • 6 篇 shawe-taylor joh...
  • 5 篇 luise giulia
  • 5 篇 denevi giulia
  • 5 篇 melchior peter
  • 4 篇 maurer andreas
  • 4 篇 salzo saverio
  • 4 篇 john shawe-taylo...
  • 4 篇 franceschi luca
  • 4 篇 wasserman larry
  • 4 篇 roeder kathryn
  • 4 篇 grazzi riccardo
  • 4 篇 romera-paredes b...
  • 3 篇 bernhard schölko...
  • 3 篇 conti zack xuere...
  • 3 篇 ho shirley
  • 3 篇 zhang qian
  • 3 篇 dardeno tina a.
  • 3 篇 linguraru marius...

语言

  • 112 篇 英文
  • 4 篇 其他
检索条件"机构=Computational Statistics and Machine Learning"
116 条 记 录,以下是31-40 订阅
排序:
On the Iteration Complexity of Hypergradient Computation
arXiv
收藏 引用
arXiv 2020年
作者: Grazzi, Riccardo Franceschi, Luca Pontil, Massimiliano Salzo, Saverio Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Genoa Italy Department of Computer Science University College London London United Kingdom
We study a general class of bilevel problems, consisting in the minimization of an upper-level objective which depends on the solution to a parametric fixed-point equation. Important instances arising in machine learn... 详细信息
来源: 评论
Multi-task averaging via task clustering
Multi-task averaging via task clustering
收藏 引用
2nd International Workshop on Similarity-Based Pattern Analysis and Recognition, SIMBAD 2013
作者: Martínez-Rego, David Pontil, Massimiliano Department of Computer Science University of a Coruña Campus de Elviña s/n 15071 A Coruña Spain Centre for Computational Statistics and Machine Learning Department of Computer Science University College London Malet Place Gower Street London WC1E 6BT United Kingdom
Multi-task averaging deals with the problem of estimating the means of a set of distributions jointly. It has its roots in the fifties when it was observed that leveraging data from related distributions can yield sup... 详细信息
来源: 评论
Conditional meta-learning of linear representations
arXiv
收藏 引用
arXiv 2021年
作者: Denevi, Giulia Pontil, Massimiliano Ciliberto, Carlo Department of Computer Science University College London London United Kingdom Istituto Italiano di Tecnologia Computational Statistics and Machine Learning Genova Italy
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks. The effectiveness of these methods is often limited when the nuances of the tasks' distri... 详细信息
来源: 评论
Meta Representation learning with Contextual Linear Bandits
arXiv
收藏 引用
arXiv 2022年
作者: Cella, Leonardo Lounici, Karim Pontil, Massimiliano Computational Statistics and Machine Learning Italian Institute of Technology Italy CMAP Ecole Polytechnique France Department of Computer Science University College London United Kingdom
Meta-learning seeks to build algorithms that rapidly learn how to solve new learning problems based on previous experience. In this paper we investigate meta-learning in the setting of stochastic linear bandit tasks. ... 详细信息
来源: 评论
Anomaly Detection in Offshore Wind Turbine Structures using Hierarchical Bayesian Modelling  14
Anomaly Detection in Offshore Wind Turbine Structures using ...
收藏 引用
14th International Workshop on Structural Health Monitoring: Designing SHM for Sustainability, Maintainability, and Reliability, IWSHM 2023
作者: Smith, Simon M. Hughes, Aidan J. Dardeno, Tina A. Bull, Lawrence A. Dervilis, Nikolaos Worden, Keith Dynamics Research Group Department of Mechanical Engineering The 2University of Sheffield Western Bank SheffieldS10 2TN United Kingdom Computational Statistics and Machine Learning Group Department of Engineering University of Cam- bridge CambridgeCB3 0FA United Kingdom
Population-based structural health monitoring (PBSHM), aims to share information between members of a population. An offshore wind (OW) farm could be considered as a population of nominally-identical wind-turbine stru... 详细信息
来源: 评论
Sensor placement and coordination via distributed multi-agent cooperative control  10
Sensor placement and coordination via distributed multi-agen...
收藏 引用
3rd International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2010
作者: Papangelis, Alexandros Metsis, Vangelis Shawe-Taylor, John Makedon, Fillia Heracleia Human-Centered Computing Laboratory Dept. of Computer Science and Engineering University of Texas Arlington 416 Yates St. Arlington TX 76019-0015 United States Centre for Computational Statistics and Machine Learning University College London London WC1E 6BT United Kingdom
This paper examines the problem of sensor placement and coordination to maximize the sensor utilization when mon-itoring different types of environments. Our assumption is that the sensors are mobile and each sensor c... 详细信息
来源: 评论
Neighborhood Component Feature Selection for Multiple Instance learning Paradigm
SSRN
收藏 引用
SSRN 2023年
作者: Romeo, Luca Turri, Giacomo Department of Economics and Law Università degli Studi di Macerata Macerata Italy Computational Statistics and Machine Learning Fondazione Istituto Italiano di Tecnologia Genova Italy
In a Multiple instance learning (MIL) scenario, the outcome annotation is usually only reported at the bag level. Considering simplicity, interpretability, and convergence criteria, the lazy learning approach (k-Neare... 详细信息
来源: 评论
Neural Architecture Search for Genomic Sequence Data
Neural Architecture Search for Genomic Sequence Data
收藏 引用
IEEE Symposium on computational Intelligence and Bioinformatics and computational Biology (CIBCB)
作者: Amadeu Scheppach Hüseyin Anil Gündüz Emilio Dorigatti Philipp C. Münch Alice C. McHardy Bernd Bischl Mina Rezaei Martin Binder Department of Statistics LMU Munich Munich Germany Department of Statistics LMU Munich and Munich Center for Machine Learning Munich Germany Department for Computational Biology of Infection Research Helmholtz Centre for Infection Research Braunschweig Germany
Deep learning has enabled outstanding progress on bioinformatics datasets and a variety of tasks, such as protein structure prediction, identification of regulatory regions, genome annotation, and interpretation of th...
来源: 评论
Operator World Models for Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Novelli, Pietro Pratticò, Marco Pontil, Massimiliano Ciliberto, Carlo Computational Statistics and Machine Learning - Istituto Italiano di Tecnologia Genova16100 Italy AI Centre Computer Science Department University College London London United Kingdom
Policy Mirror Descent (PMD) is a powerful and theoretically sound methodology for sequential decision-making. However, it is not directly applicable to Reinforcement learning (RL) due to the inaccessibility of explici... 详细信息
来源: 评论
Subspace, Latent Structure and Feature Selection  1
收藏 引用
丛书名: Lecture Notes in Computer Science
1000年
作者: Craig Saunders Marko Grobelnik Steve Gunn John Shawe-Taylor
来源: 评论