咨询与建议

限定检索结果

文献类型

  • 79 篇 期刊文献
  • 34 篇 会议
  • 3 册 图书

馆藏范围

  • 116 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 工学
    • 49 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 16 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 信息与通信工程
    • 10 篇 光学工程
    • 8 篇 电气工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 5 篇 电子科学与技术(可...
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 仪器科学与技术
    • 3 篇 环境科学与工程(可...
    • 2 篇 机械工程
    • 2 篇 土木工程
  • 68 篇 理学
    • 46 篇 数学
    • 22 篇 统计学(可授理学、...
    • 17 篇 物理学
    • 15 篇 生物学
    • 12 篇 系统科学
    • 5 篇 化学
    • 5 篇 地球物理学
  • 13 篇 管理学
    • 9 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 8 篇 医学
    • 7 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 5 篇 learning systems
  • 5 篇 machine learning
  • 4 篇 artificial intel...
  • 3 篇 reinforcement le...
  • 3 篇 learning algorit...
  • 2 篇 dynamical system...
  • 2 篇 e-learning
  • 2 篇 galaxies
  • 2 篇 sensitivity anal...
  • 2 篇 anomaly detectio...
  • 2 篇 information syst...
  • 2 篇 computer communi...
  • 2 篇 markov processes
  • 2 篇 information theo...
  • 2 篇 data mining and ...
  • 2 篇 data mining
  • 2 篇 database managem...
  • 2 篇 robots
  • 2 篇 learning
  • 2 篇 tensors

机构

  • 7 篇 department of co...
  • 5 篇 machine learning...
  • 4 篇 department of co...
  • 4 篇 center for compu...
  • 4 篇 computational bi...
  • 4 篇 computational st...
  • 4 篇 computational st...
  • 3 篇 department of st...
  • 3 篇 computational st...
  • 3 篇 informatics inst...
  • 3 篇 computational st...
  • 3 篇 centre inria de ...
  • 3 篇 computational st...
  • 3 篇 tübingen ai cent...
  • 3 篇 department of as...
  • 3 篇 department of co...
  • 3 篇 department of st...
  • 3 篇 vector institute
  • 3 篇 machine learning...
  • 3 篇 department of co...

作者

  • 33 篇 pontil massimili...
  • 14 篇 ciliberto carlo
  • 6 篇 shawe-taylor joh...
  • 5 篇 luise giulia
  • 5 篇 denevi giulia
  • 5 篇 melchior peter
  • 4 篇 maurer andreas
  • 4 篇 salzo saverio
  • 4 篇 john shawe-taylo...
  • 4 篇 franceschi luca
  • 4 篇 wasserman larry
  • 4 篇 roeder kathryn
  • 4 篇 grazzi riccardo
  • 4 篇 romera-paredes b...
  • 3 篇 bernhard schölko...
  • 3 篇 conti zack xuere...
  • 3 篇 ho shirley
  • 3 篇 zhang qian
  • 3 篇 dardeno tina a.
  • 3 篇 linguraru marius...

语言

  • 112 篇 英文
  • 4 篇 其他
检索条件"机构=Computational Statistics and Machine Learning"
116 条 记 录,以下是81-90 订阅
排序:
A New Convex Relaxation for Tensor Completion  13
A New Convex Relaxation for Tensor Completion
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Bernardino Romera-Paredes Massimiliano Pontil Department of Computer Science and UCL Interactive Centre University College London Malet Place London WC1E 6BT UK Department of Computer Science and Centre for Computational Statistics and Machine Learning University College London Malet Place London WC1E 6BT UK
We study the problem of learning a tensor from a set of linear measurements. A prominent methodology for this problem is based on a generalization of trace norm regularization, which has been used extensively for lear... 详细信息
来源: 评论
Quantum machine learning: a classical perspective
arXiv
收藏 引用
arXiv 2017年
作者: Ciliberto, Carlo Herbster, Mark Ialongo, Alessandro Davide Pontil, Massimiliano Rocchetto, Andrea Severini, Simone Wossnig, Leonard Department of Computer Science University College London Department of Engineering University of Cambridge Max Planck Institute for Intelligent Systems Tübingen Germany Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Department of Materials University of Oxford Institute of Natural Sciences Shanghai Jiao Tong University Theoretische Physik ETH Zürich
Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforceme... 详细信息
来源: 评论
Cosmology with Galaxy Photometry Alone
arXiv
收藏 引用
arXiv 2023年
作者: Hahn, ChangHoon Villaescusa-Navarro, Francisco Melchior, Peter Teyssier, Romain Department of Astrophysical Sciences Princeton University Peyton Hall PrincetonNJ08544 United States Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Center for Statistics & Machine Learning Princeton University PrincetonNJ08544 United States Program in Applied and Computational Mathematics Princeton University Fine Hall Washington Road PrincetonNJ08544-1000 United States
We present the first cosmological constraints using only the observed photometry of galaxies. Villaescusa-Navarro et al. (2022b) recently demonstrated that the internal physical properties of a single simulated galaxy... 详细信息
来源: 评论
Communication-Avoiding Optimization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation
arXiv
收藏 引用
arXiv 2017年
作者: Koanantakool, Penporn Ali, Alnur Azad, Ariful Buluç, Aydın Morozov, Dmitriy Oliker, Leonid Yelick, Katherine Oh, Sang-Yun Department of Electrical Engineering and Computer Sciences UC Berkeley United States Machine Learning Department Carnegie Mellon University United States Computational Research Division Lawrence Berkeley National Laboratory United States Berkeley Institute for Data Science UC Berkeley United States Department of Statistics and Applied Probability UC Santa Barbara United States Google Brain United States
Across a variety of scientific disciplines, sparse inverse covariance estimation is a popular tool for capturing the underlying dependency relationships in multivariate data. Unfortunately, most estimators are not sca... 详细信息
来源: 评论
Variational Policy Gradient Method for Reinforcement learning with General Utilities
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Junyu Koppel, Alec Bedi, Amrit Singh Szepesvari, Csaba Wang, Mengdi Department of Industrial and Systems Engineering University of Minnesota MinneapolisMN55455 United States Computational and Information Sciences Directorate US Army Research Laboratory AdelphiMD20783 United States Department of Computer Science DeepMind University of Alberta PrincetonNJ08544 United States Department of Electrical Engineering Center for Statistics and Machine Learning Princeton University Deepmind PrincetonNJ08544 United States
In recent years, reinforcement learning (RL) systems with general goals beyond a cumulative sum of rewards have gained traction, such as in constrained problems, exploration, and acting upon prior experiences. In this... 详细信息
来源: 评论
learning-to-learn stochastic gradient descent with biased regularization
arXiv
收藏 引用
arXiv 2019年
作者: Denevi, Giulia Ciliberto, Carlo Grazzi, Riccardo Pontil, Massimiliano Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Genoa16163 Italy Department of Mathematics University of Genoa Genoa16146 Italy Department of Electrical and Electronic Engineering Imperial College of London LondonSW7 1AL United Kingdom Department of Computer Science University College London LondonWC1E 6BT United Kingdom
We study the problem of learning-to-learn: inferring a learning algorithm that works well on tasks sampled from an unknown distribution. As class of algorithms we consider Stochastic Gradient Descent on the true risk ... 详细信息
来源: 评论
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled learning
arXiv
收藏 引用
arXiv 2022年
作者: Dorigatti, Emilio Goschenhofer, Jann Schubert, Benjamin Rezaei, Mina Bischl, Bernd Department of Statistics Ludwig-Maximilians-Universität München München80539 Germany Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health Neuherberg85764 Germany Munich Center for Machine Learning München Germany Fraunhofer Institute for Integrated Circuits IIS Erlangen91058 Germany Department of Mathematics Technical University of Munich Garching bei München85748 Germany
Positive-unlabeled learning (PUL) aims at learning a binary classifier from only positive and unlabeled training data. Even though real-world applications often involve imbalanced datasets where the majority of exampl... 详细信息
来源: 评论
Stream C sessions  8
Stream C sessions
收藏 引用
8th International Congress on Environmental Modelling and Software - Environmental Modelling and Software for Supporting a Sustainable Future, iEMSs 2016
作者: Sànchez-Marrè, Miquel Gibert, Karina Erechtchoukova, Marina Computational Sciences Department Universitat Politècnica de Catalunya-BarcelonaTech Campus Nord Ed. Omega. Jordi Girona 1-3 Barcelona Catalonia08034 Spain Statistics and Operations Research Department Universitat Politecnica de Catalunya - Barcelona Tech Campus Nord Ed C5. Jordi Girona 1-3 Barcelona08034 Spain Knowledge Engineering and Machine Learning Group Universitat Politecnica de Catalunya - Barcelona Tech Campus Nord Ed Omega. Jordi Girona 1-3 Barcelona08034 Spain School of Information Technology Faculty of Liberal Arts and Professional Studies York University 4700 Keele Street TorontoONM3J 1P3 Canada
来源: 评论
Session C1: Data mining for environmental sciences session  8
Session C1: Data mining for environmental sciences session
收藏 引用
8th International Congress on Environmental Modelling and Software - Environmental Modelling and Software for Supporting a Sustainable Future, iEMSs 2016
作者: Gibert, Karina Sànchez-Marrè, Miquel Izquierdo, Joaquín Rodríguez-Roda, Ignasi Hamilton, Serena Athanasiadis, Ioannis Ciampi, Antonio Holmes, Geoff Kuentz-Simonet, Vanessa Rambonilaza, Tina Statistics and Operations Research Department Universitat Politecnica de Catalunya Barcelona Catalonia Spain Computational Sciences Department Universitat Politècnica de Catalunya-BarcelonaTech Barcelona Catalonia Spain Knowledge Engineering and Machine Learning Group Universitat Politecnica de Catalunya - Barcelona Catalonia Spain Grupo Multidisciplinar de Modelación de Fluidos Universidad Politécnica de Valencia Spain Catalan Institute for Water Research Girona Catalonia Spain Australian National University Canberra Australia Information Technologies Group Wageningen University Netherlands McGill University Montreal Canada Waikato University New Zealand IRSTEA Institut National de Recherché en Sciences et Technologies Pour L'environnement et L'agriculture Bordeaux France
来源: 评论
DeePN2: A deep learning-based non-Newtonian hydrodynamic model
arXiv
收藏 引用
arXiv 2021年
作者: Fang, Lidong Ge, Pei Zhang, Lei Weinan, E. Lei, Huan Department of Computational Mathematics Science and Engineering Michigan State University MI48824 United States School of Mathematical Sciences Institute of Natural Sciences and MOE-LSC Shanghai Jiao Tong University 800 Dongchuan Road Shanghai200240 China Center for Machine Learning Research School of Mathematical Sciences Peking University Beijing100871 China AI for Science Institute Beijing100080 China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University NJ08544 United States Department of Statistics and Probability Michigan State University MI48824 United States
A long standing problem in the modeling of non-Newtonian hydrodynamics of polymeric flows is the availability of reliable and interpretable hydrodynamic models that faithfully encode the underlying micro-scale polymer... 详细信息
来源: 评论