Two-point Green's function is measured on the manifolds of a 2-dimensional quantum gravity. The recursive sampling technique is used to generate the triangulations, lattice sizes being up to hundred thousand trian...
Two-point Green's function is measured on the manifolds of a 2-dimensional quantum gravity. The recursive sampling technique is used to generate the triangulations, lattice sizes being up to hundred thousand triangles. The grid Laplacian was inverted by means of the algebraic multi-grid solver. The free field model of the Quantum Gravity assumes the Gaussian behavior of Liouville field and curvature. We measured histograms as well as six momenta of these fields. Our results support the Gaussian assumption.
In this article we present a new formulation for coupling spectral element discretizations to finite difference and finite element discretizations addressing flow problems in very complicated geometries. A general ite...
详细信息
The Ising model is stimulated on the manifolds of 2-dimensional quantum gravity, which are represented by fixed random triangulations (so-called quenched Ising model). Unlike the case of the Ising model on a dynamical...
The Ising model is stimulated on the manifolds of 2-dimensional quantum gravity, which are represented by fixed random triangulations (so-called quenched Ising model). Unlike the case of the Ising model on a dynamical random triangulation, there is no analytical prediction for the quenched case, since these manifolds do not have internal Hausdorff dimension and the problem cannot be formulated in matrix model language. The recursive sampling technique is used to generate the triangulations, lattice sizes being up to ten thousand triangles. The Metropolis algorithm was used for the spin update in order to obtain the initial estimation of the Curie point. After that we used the Wolff cluster algorithm in the critical region. We observed a second order phase transition, similar to that for the Ising model on a regular 2-dimensional lattice, and measured the critical exponents.
We present a physical model constructed from the Navier-Stokes equation to describe the evolution of the probability distribution function of transverse velocity gradients in 3D isotropic turbulence. Quanitative agree...
We present a physical model constructed from the Navier-Stokes equation to describe the evolution of the probability distribution function of transverse velocity gradients in 3D isotropic turbulence. Quanitative agreement with data from direct numerical simulations of isotropic turbulence for a wide range of Reynolds number is obtained. The model is based on a concrete physical picture of self-distortion of structures and interaction between random eddies and structures; the dynamical balance explains the non-Gaussian equilibrium probability distributions.
We present a physical model to describe the equilibrium probability distribution function (PDF) of velocity differences across an inertial-range distance in 3D isotropic turbulence. The form of the non-Gaussian PDF ag...
We present a physical model to describe the equilibrium probability distribution function (PDF) of velocity differences across an inertial-range distance in 3D isotropic turbulence. The form of the non-Gaussian PDF agrees well with data from direct numerical simulations. It is shown that these PDF’s obey a self-similar property, and the resulting inertial-range exponents of high-order velocity structure functions are in agreement with both experimental and numerical data. The model suggests a physical explanation for the phenomenon of intermittency and the nature of multifractality in fully developed turbulence, namely, local self-distortion of turbulent structures.
We introduce a lattice Boltzmann model for simulating immiscible binary fluids in two dimensions. The model, based on the Boltzmann equation of lattice-gas hydrodynamics, incorporates features of a previously introduc...
We introduce a lattice Boltzmann model for simulating immiscible binary fluids in two dimensions. The model, based on the Boltzmann equation of lattice-gas hydrodynamics, incorporates features of a previously introduced discrete immiscible lattice-gas model. A theoretical value of the surface-tension coefficient is derived and found to be in excellent agreement with values obtained from simulations. The model serves as a numerical method for the simulation of immiscible two-phase flow; a preliminary application illustrates a simulation of flow in a two-dimensional microscopic model of a porous medium. Extension of the model to three dimensions appears straightforward.
The dynamical triangulation model of 3-dimensional Quantum Gravity is defined and studied. We propose two different algorithms for numerical simulations, leading to consistent results. One is the 3-dimensional general...
The dynamical triangulation model of 3-dimensional Quantum Gravity is defined and studied. We propose two different algorithms for numerical simulations, leading to consistent results. One is the 3-dimensional generalization of the bonds flip, another is more sophisticated algorithm, based on Schwinger–Dyson equations. We found such care necessary, because our results appear to be quite unexpected. We simulated up to 60000 tetrahedra and observed none of the feared pathologies like factorial growth of the partition function with volume, or collapse to the branched polymer phase. The volume of the Universe grows exponentially when the bare cosmological constant λ approaches the critical value λ c from above, but the closed Universe exists and has peculiar continuum limit. The Universe compressibility diverges as (λ − λ c ) −2 and the bare Newton constant linearly approaches negative critical value as λ goes to λ c , provided the average curvature is kept at zero. The fractal properties turned out to be the same, as in two dimensions, namely the effective Hausdorff dimension grows logarithmically with the size of the test geodesic sphere.
The response of transport measures (Nusselt number, drag and lift force) for two- and three-dimensional flow past a heated cylinder reaching a chaotic state is investigated numerically using a spectral element discret...
The response of transport measures (Nusselt number, drag and lift force) for two- and three-dimensional flow past a heated cylinder reaching a chaotic state is investigated numerically using a spectral element discretization at a Reynolds number Re = 500. The undisturbed two-dimensional flow remains periodic at this Reynolds number, unless a suitable forcing is applied on the naturally produced system. Three-dimensional simulations establish that three-dimensionality sets in at Re almost-equal-to 200. Successive supercritical states are established through a series of period-doublings, before a chaotic state is reached at a Re almost-equal-to 500. For the two-dimensional forced flow, all transport measures oscillate aperiodically in time and undergo a "crisis," i.e., a sudden and dramatic increase in their amplitude. The corresponding three-dimensional, naturally produced chaotic state corresponds to a less drastic change of the transport quantities with both rms and mean values lower than their two-dimensional counterparts.
暂无评论