咨询与建议

限定检索结果

文献类型

  • 174 篇 期刊文献
  • 25 篇 会议

馆藏范围

  • 199 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 129 篇 理学
    • 54 篇 数学
    • 38 篇 统计学(可授理学、...
    • 34 篇 物理学
    • 30 篇 生物学
    • 20 篇 化学
    • 14 篇 系统科学
    • 8 篇 天文学
  • 115 篇 工学
    • 48 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 22 篇 生物医学工程(可授...
    • 19 篇 生物工程
    • 16 篇 控制科学与工程
    • 13 篇 化学工程与技术
    • 12 篇 电子科学与技术(可...
    • 11 篇 光学工程
    • 10 篇 电气工程
    • 9 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
    • 6 篇 信息与通信工程
    • 6 篇 交通运输工程
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
  • 29 篇 医学
    • 22 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 11 篇 公共卫生与预防医...
    • 9 篇 药学(可授医学、理...
  • 19 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 5 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 10 篇 农学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 法学
  • 2 篇 教育学

主题

  • 7 篇 machine learning
  • 4 篇 social networks
  • 4 篇 stochastic syste...
  • 4 篇 dynamics
  • 3 篇 network models
  • 3 篇 social systems
  • 3 篇 potential energy
  • 3 篇 tumors
  • 3 篇 scientific compu...
  • 2 篇 covid-19
  • 2 篇 dynamics of netw...
  • 2 篇 eigenvalues and ...
  • 2 篇 complex systems
  • 2 篇 prediction model...
  • 2 篇 network resilien...
  • 2 篇 precipitation
  • 2 篇 safety
  • 2 篇 electroencephalo...
  • 2 篇 networks & rando...
  • 2 篇 digital storage

机构

  • 9 篇 computational an...
  • 8 篇 applied mathemat...
  • 8 篇 computational an...
  • 7 篇 department of ma...
  • 6 篇 department of bi...
  • 6 篇 university of gl...
  • 6 篇 faculty of scien...
  • 6 篇 computational an...
  • 6 篇 department of ma...
  • 6 篇 department of ma...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 department of ph...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...

作者

  • 41 篇 masuda naoki
  • 10 篇 naoki masuda
  • 9 篇 jasra ajay
  • 6 篇 zhang linfeng
  • 6 篇 weinan e.
  • 5 篇 aviad levis
  • 5 篇 alan p. marscher
  • 5 篇 jirong mao
  • 5 篇 charles f. gammi...
  • 5 篇 svetlana jorstad
  • 5 篇 nicola marchili
  • 5 篇 chet ruszczyk
  • 5 篇 roberto garcía
  • 5 篇 oliver porth
  • 5 篇 daniel r. van ro...
  • 5 篇 shiro ikeda
  • 5 篇 kazuhiro hada
  • 5 篇 luis c. ho
  • 5 篇 antxon alberdi
  • 5 篇 wen-ping lo

语言

  • 191 篇 英文
  • 7 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=Computational and Data-Enabled Science and Engineering Program"
199 条 记 录,以下是141-150 订阅
排序:
What we should learn from pandemic publishing
arXiv
收藏 引用
arXiv 2024年
作者: Sikdar, Satyaki Venturini, Sara Charpignon, Marie-Laure Kumar, Sagar Rinaldi, Francesco Tudisco, Francesco Fortunato, Santo Majumder, Maimuna S. Luddy School of Informatics Computing and Engineering Indiana University BloomingtonIN United States Department of Computer Science Loyola University Chicago ChicagoIL United States Senseable City Laboratory Massachusetts Institute of Technology CambridgeMA United States Department of Mathematics "Tullio Levi-Civita" University of Padova Padova Italy Institute for Data Systems and Society Massachusetts Institute of Technology CambridgeMA United States Network Science Institute Northeastern University BostonMA United States School of Mathematics The University of Edinburgh Edinburgh United Kingdom School of Mathematics Gran Sasso Science Institute L’Aquila Italy Department of Pediatrics Harvard Medical School BostonMA United States Computational Health Informatics Program Boston Children’s Hospital BostonMA United States
Since the emergence of COVID-19, discussions of ongoing pandemic-related research have accounted for an unprecedented share of media coverage and debate in the public sphere1. The urgency of the pandemic forced resear... 详细信息
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Scientific discovery in the age of artificial intelligence
收藏 引用
NATURE 2023年 第7978期621卷 E33-E33页
作者: Wang, Hanchen Fu, Tianfan Du, Yuanqi Gao, Wenhao Huang, Kexin Liu, Ziming Chandak, Payal Liu, Shengchao Van Katwyk, Peter Deac, Andreea Anandkumar, Anima Bergen, Karianne Gomes, Carla P. Ho, Shirley Kohli, Pushmeet Lasenby, Joan Leskovec, Jure Liu, Tie-Yan Manrai, Arjun Marks, Debora Ramsundar, Bharath Song, Le Sun, Jimeng Tang, Jian Velickovic, Petar Welling, Max Zhang, Linfeng Coley, Connor W. Bengio, Yoshua Zitnik, Marinka Department of Engineering University of Cambridge Cambridge UK Department of Computing and Mathematical Sciences California Institute of Technology Pasadena CA USA NVIDIA Santa Clara CA USA Department of Computational Science and Engineering Georgia Institute of Technology Atlanta GA USA Department of Computer Science Cornell University Ithaca NY USA Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA USA Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA USA Department of Computer Science Stanford University Stanford CA USA Department of Physics Massachusetts Institute of Technology Cambridge MA USA Harvard-MIT Program in Health Sciences and Technology Cambridge MA USA Mila – Quebec AI Institute Montreal Quebec Canada Université de Montréal Montreal Quebec Canada HEC Montréal Montreal Quebec Canada CIFAR AI Chair Toronto Ontario Canada Department of Earth Environmental and Planetary Sciences Brown University Providence RI USA Data Science Institute Brown University Providence RI USA Center for Computational Astrophysics Flatiron Institute New York NY USA Department of Astrophysical Sciences Princeton University Princeton NJ USA Department of Physics Carnegie Mellon University Pittsburgh PA USA Department of Physics and Center for Data Science New York University New York NY USA Google DeepMind London UK Department of Computer Science and Technology University of Cambridge Cambridge UK Microsoft Research Beijing China Department of Biomedical Informatics Harvard Medical School Boston MA USA Broad Institute of MIT and Harvard Cambridge MA USA Harvard Data Science Initiative Cambridge MA USA Kempner Institute for the Study of Natural and Artificial Intelligence Harvard University Cambridge MA USA Department of Systems Biology Harvard Medical School Boston MA USA Deep Forest Sciences Palo Alto CA USA BioMap Beijing China Mo
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond
arXiv
收藏 引用
arXiv 2023年
作者: Takaba, Kenichiro Pulido, Iván Behara, Pavan Kumar Cavender, Chapin E. Friedman, Anika J. Henry, Michael M. MacDermott-Opeskin, Hugo Iacovella, Christopher R. Nagle, Arnav M. Payne, Alexander Matthew Shirts, Michael R. Mobley, David L. Chodera, John D. Wang, Yuanqing Computational and Systems Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New YorkNY10065 United States Pharmaceuticals Research Center Advanced Drug Discovery Asahi Kasei Pharma Corporation Shizuoka410-2321 Japan Center for Neurotherapeutics Department of Pathology and Laboratory Medicine University of California IrvineCA92697 United States Skaggs School of Pharmacy and Pharmaceutical Sciences University of California 9500 Gilman Drive La Jolla San DiegoCA92093 United States Department of Chemical and Biological Engineering University of Colorado Boulder BoulderCO80309 United States Open Molecular Software Foundation DavisCA95618 United States Department of Bioengineering University of California Berkeley BerkeleyCA94720 United States Department of Pharmaceutical Sciences University of California IrvineCA92697 United States Tri-Institutional Ph.D. Program in Chemical Biology Memorial Sloan Kettering Cancer Center New YorkNY10065 United States Simons Center for Computational Physical Chemistry Center for Data Science New York University New YorkNY10004 United States
The development of reliable and extensible molecular mechanics (MM) force fields—fast, empirical models characterizing the potential energy surface of molecular systems—is indispensable for biomolecular simulation a... 详细信息
来源: 评论
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
arXiv
收藏 引用
arXiv 2023年
作者: Eastman, Peter Galvelis, Raimondas Peláez, Raúl P. Abreu, Charlles R.A. Farr, Stephen E. Gallicchio, Emilio Gorenko, Anton Henry, Michael M. Hu, Frank Huang, Jing Krämer, Andreas Michel, Julien Mitchell, Joshua A. Pande, Vijay S. Rodrigues, João P.G.L.M. Rodriguez-Guerra, Jaime Simmonett, Andrew C. Singh, Sukrit Swails, Jason Turner, Philip Wang, Yuanqing Zhang, Ivy Chodera, John D. De Fabritiis, Gianni Markland, Thomas E. Department of Chemistry Stanford University StanfordCA94305 United States Acellera Labs C Dr Trueta 183 Barcelona08005 Spain C Dr. Aiguader 88 Barcelona08003 Spain Chemical Engineering Department School of Chemistry Federal University of Rio de Janeiro Rio de Janeiro68542 Brazil Redesign Science Inc. 180 Varick St. New YorkNY10014 United States EaStCHEM School of Chemistry University of Edinburgh EH9 3FJ United Kingdom Department of Chemistry and Biochemistry Brooklyn College The City University of New York NY United States Ph.D. Program in Chemistry Ph.D. Program in Biochemistry The Graduate Center of the City University of New York New YorkNY United States Stream HPC Koningin Wilhelminaplein 1 - 40601 Amsterdam1062 HG Netherlands Computational and Systems Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New YorkNY10065 United States Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Zhejiang Hangzhou310024 China Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 12 Berlin14195 Germany The Open Force Field Initiative Open Molecular Software Foundation DavisCA95616 United States Andreessen Horowitz 2865 Sand Hill Rd Menlo ParkCA94025 United States Department of Structural Biology Stanford University StanfordCA94305 United States Charité Universitätsmedizin Berlin In silico Toxicology and Structural Bioinformatics Virchowweg 6 Berlin10117 Germany Laboratory of Computational Biology National Heart Lung and Blood Institute National Institutes of Health BethesdaMD20892 United States Entos Inc. 9310 Athena Circle La Jolla CA92037 United States College of Engineering Virginia Polytechnic Institute State University BlacksburgVA24061 United States Simons Center for Computational Physical Chemistry Center for Data Science New York University 24 Waverly Place New YorkNY10004 United States T
Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbi... 详细信息
来源: 评论
DeePMD-kit v2: A software package for Deep Potential models
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li'ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E.A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. Weinan, E. Car, Roberto Zhang, Linfeng Wang, Han Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China College of Electrical and Information Engineering Hunan University Changsha China Yuanpei College Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Department of Experimental Physics Comenius University Mlynská Dolina F2 Bratislava842 48 Slovakia Center for Quantum Information Institute for Interdisciplinary Information Sciences Tsinghua University Beijing100084 China Center for Data Science Peking University Beijing100871 China ByteDance Research Zhonghang Plaza No. 43 North 3rd Ring West Road Haidian District Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Baidu Inc. Beijing China Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University Zhejiang Hangzhou China Westlake AI Therapeutics Lab Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Hangzhou China Department of Chemistry Princeton University PrincetonNJ08544 United States SISSA Scuola Internazionale Superiore di Studi Avanzati Trieste34136 Italy Laboratory of Computational Science and Modeling Institute of Materials École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland Department of Physics National University of Defense Technology Hunan Changsha410073 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China School of Electronics Engineerin
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 20... 详细信息
来源: 评论
The Minimum Information about CLinical Artificial Intelligence Checklist for Generative Modeling Research (MI-CLAIM-GEN)
arXiv
收藏 引用
arXiv 2024年
作者: Miao, Brenda Y. Chen, Irene Y. Williams, Christopher Y.K. Davidson, Jaysón Garcia-Agundez, Augusto Sun, Shenghuan Zack, Travis Saria, Suchi Arnaout, Rima Quer, Giorgio Sadaei, Hossein J. Torkamani, Ali Beaulieu-Jones, Brett Yu, Bin Gianfrancesco, Milena Butte, Atul J. Norgeot, Beau Sushil, Madhumita Bakar Computational Health Sciences Institute University of California San Francisco San FranciscoCA United States UCSF-UC Berkeley Joint Program in Computational Precision Health University of California Berkeley University of California San Francisco BerkeleyCA United States Department of Electrical Engineering and Computer Sciences University of California Berkeley BerkeleyCA United States Berkeley AI Research University of California Berkeley BerkeleyCA United States Department of Medicine Division of Rheumatology University of California San Francisco San FranciscoCA United States Helen Diller Family Comprehensive Cancer Center University of California San Francisco San FranciscoCA United States Center for Data-driven Insights and Innovation University of California Office of the President OaklandCA United States Bayesian Health New YorkNY10282 United States Department of Computer Science Johns Hopkins University Whiting School of Engineering BaltimoreMD United States Department of Health Policy & Management Johns Hopkins University Bloomberg School of Public Health BaltimoreMD United States Department of Medicine Johns Hopkins Medicine BaltimoreMD21205 United States Departments of Medicine Radiology and Pediatrics University of California San Francisco San FranciscoCA United States Scripps Research Translational Institute La Jolla CA United States Department of Integrative Structural and Computational Biology Scripps Research La Jolla CA92037 United States Department of Medicine University of Chicago ChicagoIL United States Department of Statistics University of California Berkeley BerkeleyCA United States Center for Computational Biology University of California Berkeley BerkeleyCA United States Qualified Health PBC Palo AltoCA United States
Recent advances in generative models, including large language models (LLMs), vision language models (VLMs), and diffusion models, have accelerated the field of natural language and image processing in medicine and ma... 详细信息
来源: 评论
Democratising Knowledge Representation with BioCypher
arXiv
收藏 引用
arXiv 2022年
作者: Lobentanzer, Sebastian Aloy, Patrick Baumbach, Jan Bohar, Balazs Charoentong, Pornpimol Danhauser, Katharina Doğan, Tunca Dreo, Johann Dunham, Ian Fernandez-Torras, Adrià Gyori, Benjamin M. Hartung, Michael Hoyt, Charles Tapley Klein, Christoph Korcsmaros, Tamas Maier, Andreas Mann, Matthias Ochoa, David Pareja-Lorente, Elena Popp, Ferdinand Preusse, Martin Probul, Niklas Schwikowski, Benno Sen, Bünyamin Strauss, Maximilian T. Turei, Denes Ulusoy, Erva Heidrun Wodke, Judith Andrea Saez-Rodriguez, Julio Heidelberg University Faculty of Medicine Heidelberg University Hospital Institute for Computational Biomedicine Bioquant Heidelberg Germany The Barcelona Institute of Science and Technology Catalonia Barcelona Spain Catalonia Barcelona Spain Institute for Computational Systems Biology University of Hamburg Germany Earlham Institute Norwich United Kingdom Biological Research Centre Szeged Hungary Heidelberg University Im Neuenheimer Feld 267 Heidelberg69120 Germany Im Neuenheimer Feld 460 Heidelberg69120 Germany Department of Pediatrics Dr. von Hauner Children’s Hospital University Hospital LMU Munich Germany Biological Data Science Lab Department of Computer Engineering Hacettepe University Ankara Turkey Department of Bioinformatics Graduate School of Health Sciences Hacettepe University Ankara Turkey Computational Systems Biomedicine Lab Department of Computational Biology Institut Pasteur Université Paris Cité Paris France Bioinformatics and Biostatistics Hub Institut Pasteur Université Paris Cité Paris France Wellcome Genome Campus Cambridgeshire HinxtonCB10 1SD United Kingdom Open Targets Wellcome Genome Campus Cambridgeshire HinxtonCB10 1SD United Kingdom Laboratory of Systems Pharmacology Harvard Medical School Boston United States Imperial College London London United Kingdom Quadram Institute Bioscience Norwich United Kingdom Proteomics Program Novo Nordisk Foundation Centre for Protein Research University of Copenhagen Copenhagen Denmark Department of Proteomics and Signal Transduction Max Planck Institute of Biochemistry Martinsried Germany Im Neuenheimer Feld 460 Heidelberg69120 Germany Neuherberg Germany Medical Informatics Laboratory University Medicine Greifswald Germany
Standardising the representation of biomedical knowledge among all researchers is an insurmountable task, hindering the effectiveness of many computational methods. To facilitate harmonisation and interoperability des... 详细信息
来源: 评论
Ten quick tips for deep learning in biology
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Benjamin D. Gitter, Anthony Greene, Casey S. Raschka, Sebastian Maguire, Finlay Titus, Alexander J. Kessler, Michael D. Lee, Alexandra J. Chevrette, Marc G. Stewart, Paul Allen Britto-Borges, Thiago Cofer, Evan M. Yu, Kun-Hsing Carmona, Juan Jose Fertig, Elana J. Kalinin, Alexandr A. Signal, Beth Lengerich, Benjamin J. Triche, Timothy J. Boca, Simina M. In-Q-Tel Labs School of Engineering and Applied Sciences Harvard University Department of Genetics Harvard Medical School United States Department of Biostatistics and Medical Informatics University of Wisconsin-Madison MadisonWI United States Morgridge Institute for Research MadisonWI United States Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States Center for Health AI University of Colorado School of Medicine AuroraCO United States Department of Statistics University of Wisconsin Madison United States Faculty of Computer Science Dalhousie University Canada University of New Hampshire Bioeconomy.XYZ United States Department of Oncology Johns Hopkins University United States Institute for Genome Sciences University of Maryland School of Medicine United States Genomics and Computational Biology Graduate Program University of Pennsylvania United States Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania United States Wisconsin Institute for Discovery Department of Plant Pathology University of Wisconsin-Madison United States Department of Biostatistics and Bioinformatics Moffitt Cancer Center TampaFL United States Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology University Hospital Heidelberg Germany University Hospital Heidelberg Germany Lewis-Sigler Institute for Integrative Genomics Princeton University PrincetonNJ United States Graduate Program in Quantitative and Computational Biology Princeton University PrincetonNJ United States Department of Biomedical Informatics Harvard Medical School United States Department of Pathology Brigham and Women's Hospital United States Philips Healthcare CambridgeMA United States Philips Research
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and us... 详细信息
来源: 评论