咨询与建议

限定检索结果

文献类型

  • 153 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 169 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 理学
    • 44 篇 数学
    • 33 篇 统计学(可授理学、...
    • 26 篇 生物学
    • 23 篇 物理学
    • 13 篇 系统科学
    • 12 篇 化学
    • 8 篇 天文学
  • 101 篇 工学
    • 42 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 19 篇 生物医学工程(可授...
    • 16 篇 控制科学与工程
    • 16 篇 生物工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 8 篇 光学工程
    • 7 篇 电气工程
    • 5 篇 动力工程及工程热...
    • 4 篇 仪器科学与技术
    • 4 篇 信息与通信工程
    • 4 篇 交通运输工程
  • 22 篇 医学
    • 18 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 9 篇 公共卫生与预防医...
    • 7 篇 药学(可授医学、理...
  • 16 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 5 篇 工商管理
    • 4 篇 图书情报与档案管...
  • 7 篇 农学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 1 篇 教育学

主题

  • 5 篇 machine learning
  • 4 篇 social networks
  • 4 篇 stochastic syste...
  • 4 篇 dynamics
  • 3 篇 network models
  • 3 篇 social systems
  • 3 篇 tumors
  • 3 篇 scientific compu...
  • 2 篇 dynamics of netw...
  • 2 篇 eigenvalues and ...
  • 2 篇 complex systems
  • 2 篇 prediction model...
  • 2 篇 cancer
  • 2 篇 network resilien...
  • 2 篇 precipitation
  • 2 篇 networks & rando...
  • 2 篇 costs
  • 2 篇 time series
  • 2 篇 game theory
  • 2 篇 ising model

机构

  • 9 篇 computational an...
  • 8 篇 applied mathemat...
  • 8 篇 computational an...
  • 7 篇 department of ma...
  • 6 篇 department of bi...
  • 6 篇 university of gl...
  • 6 篇 faculty of scien...
  • 6 篇 computational an...
  • 6 篇 department of ma...
  • 6 篇 department of ma...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 department of ph...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...

作者

  • 41 篇 masuda naoki
  • 10 篇 naoki masuda
  • 9 篇 jasra ajay
  • 5 篇 aviad levis
  • 5 篇 alan p. marscher
  • 5 篇 jirong mao
  • 5 篇 charles f. gammi...
  • 5 篇 svetlana jorstad
  • 5 篇 nicola marchili
  • 5 篇 chet ruszczyk
  • 5 篇 roberto garcía
  • 5 篇 oliver porth
  • 5 篇 daniel r. van ro...
  • 5 篇 shiro ikeda
  • 5 篇 kazuhiro hada
  • 5 篇 luis c. ho
  • 5 篇 antxon alberdi
  • 5 篇 wen-ping lo
  • 5 篇 roger brissenden
  • 5 篇 thomas p. krichb...

语言

  • 161 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"机构=Computational and Data-Enabled Sciences and Engineering Program"
169 条 记 录,以下是121-130 订阅
排序:
Cell2Sentence: teaching large language models the language of biology  24
Cell2Sentence: teaching large language models the language o...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Daniel Levine Syed Asad Rizvi Sacha Lévy Nazreen Pallikkavaliyaveetil David Zhang Xingyu Chen Sina Ghadermarzi Ruiming Wu Zihe Zheng Ivan Vrkic Anna Zhong Daphne Raskin Insu Han Antonio Henrique De Oliveira Fonseca Josue Ortega Caro Amin Karbasi Rahul M. Dhodapkar David Van Dijk Department of Computer Science Yale University New Haven CT School of Engineering Applied Science University of Pennsylvania Philadelphia PA School of Computer and Communication Sciences Swiss Federal Institute of Technology Lausanne Lausanne Switzerland Department of Computer Science Yale University New Haven CT and Department of Neuroscience Yale School of Medicine New Haven CT Department of Computer Science Yale University New Haven CT and Department of Neuroscience Yale School of Medicine New Haven CT and Wu Tsai Institute Yale University New Haven CT Google and Yale Institute for Foundations of Data Science New Haven CT and Department of Computer Science Yale University New Haven CT and Yale School of Engineering and Applied Science New Haven CT Roski Eye Institute University of Southern California Los Angeles CA and Department of Internal Medicine (Cardiology) Yale School of Medicine New Haven CT Department of Computer Science Yale University New Haven CT and Yale Institute for Foundations of Data Science New Haven CT and Wu Tsai Institute Yale University New Haven CT and Cardiovascular Research Center Yale School of Medicine New Haven CT and Interdepartmental Program in Computational Biology & Bioinformatics Yale University New Haven CT and Department of Internal Medicine (Cardiology) Yale School of Medicine New Haven CT
We introduce Cell2Sentence (C2S), a novel method to directly adapt large language models to a biological context, specifically single-cell transcriptomics. By transforming gene expression data into "cell sentence...
来源: 评论
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
arXiv
收藏 引用
arXiv 2023年
作者: Eastman, Peter Galvelis, Raimondas Peláez, Raúl P. Abreu, Charlles R.A. Farr, Stephen E. Gallicchio, Emilio Gorenko, Anton Henry, Michael M. Hu, Frank Huang, Jing Krämer, Andreas Michel, Julien Mitchell, Joshua A. Pande, Vijay S. Rodrigues, João P.G.L.M. Rodriguez-Guerra, Jaime Simmonett, Andrew C. Singh, Sukrit Swails, Jason Turner, Philip Wang, Yuanqing Zhang, Ivy Chodera, John D. De Fabritiis, Gianni Markland, Thomas E. Department of Chemistry Stanford University StanfordCA94305 United States Acellera Labs C Dr Trueta 183 Barcelona08005 Spain C Dr. Aiguader 88 Barcelona08003 Spain Chemical Engineering Department School of Chemistry Federal University of Rio de Janeiro Rio de Janeiro68542 Brazil Redesign Science Inc. 180 Varick St. New YorkNY10014 United States EaStCHEM School of Chemistry University of Edinburgh EH9 3FJ United Kingdom Department of Chemistry and Biochemistry Brooklyn College The City University of New York NY United States Ph.D. Program in Chemistry Ph.D. Program in Biochemistry The Graduate Center of the City University of New York New YorkNY United States Stream HPC Koningin Wilhelminaplein 1 - 40601 Amsterdam1062 HG Netherlands Computational and Systems Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New YorkNY10065 United States Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Zhejiang Hangzhou310024 China Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 12 Berlin14195 Germany The Open Force Field Initiative Open Molecular Software Foundation DavisCA95616 United States Andreessen Horowitz 2865 Sand Hill Rd Menlo ParkCA94025 United States Department of Structural Biology Stanford University StanfordCA94305 United States Charité Universitätsmedizin Berlin In silico Toxicology and Structural Bioinformatics Virchowweg 6 Berlin10117 Germany Laboratory of Computational Biology National Heart Lung and Blood Institute National Institutes of Health BethesdaMD20892 United States Entos Inc. 9310 Athena Circle La Jolla CA92037 United States College of Engineering Virginia Polytechnic Institute State University BlacksburgVA24061 United States Simons Center for Computational Physical Chemistry Center for Data Science New York University 24 Waverly Place New YorkNY10004 United States T
Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbi... 详细信息
来源: 评论
Ten quick tips for deep learning in biology
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Benjamin D. Gitter, Anthony Greene, Casey S. Raschka, Sebastian Maguire, Finlay Titus, Alexander J. Kessler, Michael D. Lee, Alexandra J. Chevrette, Marc G. Stewart, Paul Allen Britto-Borges, Thiago Cofer, Evan M. Yu, Kun-Hsing Carmona, Juan Jose Fertig, Elana J. Kalinin, Alexandr A. Signal, Beth Lengerich, Benjamin J. Triche, Timothy J. Boca, Simina M. In-Q-Tel Labs School of Engineering and Applied Sciences Harvard University Department of Genetics Harvard Medical School United States Department of Biostatistics and Medical Informatics University of Wisconsin-Madison MadisonWI United States Morgridge Institute for Research MadisonWI United States Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States Center for Health AI University of Colorado School of Medicine AuroraCO United States Department of Statistics University of Wisconsin Madison United States Faculty of Computer Science Dalhousie University Canada University of New Hampshire Bioeconomy.XYZ United States Department of Oncology Johns Hopkins University United States Institute for Genome Sciences University of Maryland School of Medicine United States Genomics and Computational Biology Graduate Program University of Pennsylvania United States Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania United States Wisconsin Institute for Discovery Department of Plant Pathology University of Wisconsin-Madison United States Department of Biostatistics and Bioinformatics Moffitt Cancer Center TampaFL United States Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology University Hospital Heidelberg Germany University Hospital Heidelberg Germany Lewis-Sigler Institute for Integrative Genomics Princeton University PrincetonNJ United States Graduate Program in Quantitative and Computational Biology Princeton University PrincetonNJ United States Department of Biomedical Informatics Harvard Medical School United States Department of Pathology Brigham and Women's Hospital United States Philips Healthcare CambridgeMA United States Philips Research
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and us... 详细信息
来源: 评论
Democratising Knowledge Representation with BioCypher
arXiv
收藏 引用
arXiv 2022年
作者: Lobentanzer, Sebastian Aloy, Patrick Baumbach, Jan Bohar, Balazs Charoentong, Pornpimol Danhauser, Katharina Doğan, Tunca Dreo, Johann Dunham, Ian Fernandez-Torras, Adrià Gyori, Benjamin M. Hartung, Michael Hoyt, Charles Tapley Klein, Christoph Korcsmaros, Tamas Maier, Andreas Mann, Matthias Ochoa, David Pareja-Lorente, Elena Popp, Ferdinand Preusse, Martin Probul, Niklas Schwikowski, Benno Sen, Bünyamin Strauss, Maximilian T. Turei, Denes Ulusoy, Erva Heidrun Wodke, Judith Andrea Saez-Rodriguez, Julio Heidelberg University Faculty of Medicine Heidelberg University Hospital Institute for Computational Biomedicine Bioquant Heidelberg Germany The Barcelona Institute of Science and Technology Catalonia Barcelona Spain Catalonia Barcelona Spain Institute for Computational Systems Biology University of Hamburg Germany Earlham Institute Norwich United Kingdom Biological Research Centre Szeged Hungary Heidelberg University Im Neuenheimer Feld 267 Heidelberg69120 Germany Im Neuenheimer Feld 460 Heidelberg69120 Germany Department of Pediatrics Dr. von Hauner Children’s Hospital University Hospital LMU Munich Germany Biological Data Science Lab Department of Computer Engineering Hacettepe University Ankara Turkey Department of Bioinformatics Graduate School of Health Sciences Hacettepe University Ankara Turkey Computational Systems Biomedicine Lab Department of Computational Biology Institut Pasteur Université Paris Cité Paris France Bioinformatics and Biostatistics Hub Institut Pasteur Université Paris Cité Paris France Wellcome Genome Campus Cambridgeshire HinxtonCB10 1SD United Kingdom Open Targets Wellcome Genome Campus Cambridgeshire HinxtonCB10 1SD United Kingdom Laboratory of Systems Pharmacology Harvard Medical School Boston United States Imperial College London London United Kingdom Quadram Institute Bioscience Norwich United Kingdom Proteomics Program Novo Nordisk Foundation Centre for Protein Research University of Copenhagen Copenhagen Denmark Department of Proteomics and Signal Transduction Max Planck Institute of Biochemistry Martinsried Germany Im Neuenheimer Feld 460 Heidelberg69120 Germany Neuherberg Germany Medical Informatics Laboratory University Medicine Greifswald Germany
Standardising the representation of biomedical knowledge among all researchers is an insurmountable task, hindering the effectiveness of many computational methods. To facilitate harmonisation and interoperability des... 详细信息
来源: 评论
26th Annual computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第Sup1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Kings County Hospital Center Brooklyn NY 11203 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Worldwide Soundscapes: A Synthesis of Passive Acoustic Monitoring Across Realms
收藏 引用
Global Ecology and Biogeography 2025年 第5期34卷
作者: Kevin F. A. Darras Rodney A. Rountree Steven L. Van Wilgenburg Anna F. Cord Frederik Pitz Youfang Chen Lijun Dong Agnès Rocquencourt Camille Desjonquères Patrick Mauritz Diaz Tzu-Hao Lin Théophile Turco Louise Emmerson Tom Bradfer-Lawrence Amandine Gasc Sarah Marley Marcus Salton Laura Schillé Paul J. Wensveen Shih-Hung Wu Adriana C. Acero-Murcia Orlando Acevedo-Charry Matyáš Adam Jacopo Aguzzi Irmak Akoglu M. Clara P. Amorim Mina Anders Michel André Alexandre Antonelli Leandro Aparecido Do Nascimento Giulliana Appel Stephanie Archer Christos Astaras Andrey Atemasov Jamieson Atkinson Joël Attia Emanuel Baltag Luc Barbaro Fritjof Basan Carly Batist Julio Ernesto Baumgarten Just T. Bayle Sempere Kristen Bellisario Asaf Ben David Oded Berger-Tal Frédéric Bertucci Matthew G. Betts Iqbal S. Bhalla Thiago Bicudo Marta Bolgan Sara Bombaci Gerard Bota Martin Boullhesen Robert A. Briers Susannah Buchan Michal Budka Katie Burchard Giuseppa Buscaino Alice Calvente Marconi Campos-Cerqueira Maria Isabel Carvalho Gonçalves Maria Ceraulo Maite Cerezo-Araujo Gunnar Cerwén Adams A. Chaskda Maria Chistopolova Christopher W. Clark Kieran D. Cox Benjamin Cretois Chapin Czarnecki Luis P. da Silva Wigna da Silva Laurence H. De Clippele David de la Haye Ana Silvia de Oliveira Tissiani Devin de Zwaan M. Eugenia Degano Jessica Deichmann Joaquin del Rio Christian Devenish Ricardo Díaz-Delgado Pedro Diniz Dorgival Diógenes Oliveira-Júnior Thiago Dorigo Saskia Dröge Marina Duarte Adam Duarte Kerry Dunleavy Robert Dziak Simon Elise Hiroto Enari Haruka S. Enari Florence Erbs Britas Klemens Eriksson Pınar Ertör-Akyazi Nina C. Ferrari Luane Ferreira Abram B. Fleishman Paulo J. Fonseca Bárbara Freitas Nicholas R. Friedman Jérémy S. P. Froidevaux Svetlana Gogoleva Carolina Gonzaga José Miguel González Correa Eben Goodale Benjamin Gottesman Ingo Grass Jack Greenhalgh Jocelyn Gregoire Samuel Haché Jonas Hagge William Halliday Antonia Hammer Tara Hanf-Dressler Sylvain Haupert Samara Haver Becky Heath Daniel Hending Jose Hernandez-Blanco Dennis Higgs EFNO ECODIV INRAE Domaine des Barres Nogent-sur-Vernisson France Sustainable Agricultural Systems & Engineering Lab School of Engineering Westlake University Hangzhou Zhejiang China Chair of Computational Landscape Ecology Faculty of Environmental Sciences Dresden University of Technology Dresden Germany Biology Department University of Victoria Victoria British Columbia Canada The Fish Listener Waguoit Massachusetts USA Terrestrial Unit Prairie Region Canadian Wildlife Service Environment & Climate Change Canada Prairie & Northern Wildlife Research Centre Saskatoon Saskatchewan Canada Agro-ecological Modeling Group Faculty of Agriculture University of Bonn Bonn Germany Marine Mammal and Marine Bioacoustics Laboratory Department of Deep Sea Science Institute of Deep-sea Science and Engineering Chinese Academy of Sciences Sanya Hainan China Institut de Systématique Évolution Biodiversité Muséum National d’Histoire Naturelle Paris France Université Grenoble Alpes Université Savoie Mont Blanc CNRS LECA Grenoble France Climate Change and Biodiversity Hanns R. Neumann Stiftung Indonesia Muaradua Indonesia Biodiversity Research Center Academia Sinica Nankang Taipei Taiwan ENES Bioacoustics Research Laboratory University of Saint-Etienne CRNL CNRS UMR 5292 Inserm UMR_S 1028 Saint-Etienne France Australian Antarctic Division Science Branch Department of Climate Change Energy Environment and Water Channel Highway Kingston Tasmania Australia Biological and Environmental Sciences University of Stirling Stirling Scotland Centre for Conservation Science RSPB Edinburgh UK IMBE Aix Marseille Univ Avignon Univ CNRS IRD Aix-en-Provence France Scotland's Rural College Craibstone Estate Aberdeen UK BIOGECO INRAE University of Bordeaux Cestas France Westman Islands Research Centre University of Iceland Vestmannaeyjar Iceland Qigu Research Center Taiwan Biodiversity Research Institute Nantou County Taiwan Programa de Pós-graduação em Ecologia
Aim The urgency for remote, reliable and scalable biodiversity monitoring amidst mounting human pressures on ecosystems has sparked worldwide interest in Passive Acoustic Monitoring (PAM), which can track life underwa... 详细信息
来源: 评论
Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data
Research Square
收藏 引用
Research Square 2021年
作者: Zhang, Martin Jinye Hou, Kangcheng Pasaniuc, Bogdan Price, Alkes L. Dey, Kushal K. Jagadeesh, Karthik A. Weinand, Kathryn Sakaue, Saori Taychameekiatchai, Aris Rao, Poorvi Pisco, Angela Oliveira Zou, James Wang, Bruce Gandal, Michael Raychaudhuri, Soumya Harvard University United States Osaka University Japan Department of Epidemiology Harvard T.H. Chan School of Public Health BostonMA United States Program in Medical and Population Genetics Broad Institute of MIT and Harvard CambridgeMA United States Bioinformatics Interdepartmental Program University of California Los Angeles Los AngelesCA United States Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California Los Angeles Los AngelesCA United States Department of Computational Medicine David Geffen School of Medicine University of California Los Angeles Los AngelesCA United States Center for Data Sciences Brigham and Women’s Hospital BostonMA United States Division of Genetics Department of Medicine Brigham and Women’s Hospital Harvard Medical School BostonMA United States Division of Rheumatology Inflammation and Immunity Department of Medicine Brigham and Women’s Hospital Harvard Medical School BostonMA United States Department of Biomedical Informatics Harvard Medical School BostonMA United States Department of Medicine and Liver Center University of California San Francisco San FranciscoCA United States Developmental and Stem Cell Biology Graduate Program University of California San Francisco San FranciscoCA United States Chan Zuckerberg Biohub San FranciscoCA United States Department of Electrical Engineering Stanford University Palo AltoCA United States Department of Biomedical Data Science Stanford University Palo AltoCA United States Department of Psychiatry David Geffen School of Medicine University of California Los Angeles Los AngelesCA United States Department of Human Genetics David Geffen School of Medicine University of California Los Angeles Los AngelesCA United States Program in Neurobehavioral Genetics Semel Institute David Geffen School of Medicine University of California Los Angeles Los AngelesCA United States Versus Arthritis Centre for Genetics and Genomic
Gene expression at the individual cell-level resolution, as quantified by single-cell RNA-sequencing (scRNA-seq), can provide unique insights into the pathology and cellular origin of diseases and complex traits. Here... 详细信息
来源: 评论
Correction: Machine learning-based prediction of COVID-19 mortality using immunological and metabolic biomarkers
收藏 引用
BMC Digital Health 2023年 第1期1卷 1-1页
作者: Thomas Wetere Tulu Ching Long Chan Chun Hei Wu Kei Hang Katie Chan Tsz Kin Wan Peter Yat Ming Woo Cee Zhung Steven Tseng Asmir Vodencarevic Cristina Menni Department of Biomedical Sciences City University of Hong Kong Hong Kong SAR China Computational Data Science Program Addis Ababa University Addis Ababa Ethiopia Department of Electrical Engineering City University of Hong Kong Hong Kong SAR China Department of Epidemiology and Center for Global Cardiometabolic Health School of Public Health Brown University Providence RI USA Department of Neurosurgery Kwong Wah Hospital Hong Kong SAR China Department of Medicine and Geriatrics Kwong Wah Hospital Hong Kong SAR China Innovative Medicines Novartis Pharma GmbH 90429 Nuremberg Germany Department of Twin Research King’s College London London UK
来源: 评论