Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse *** study introduces a neural network-based model that us...
详细信息
Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse *** study introduces a neural network-based model that uses Long-Short-Term Memory(LSTM)to optimize resource allocation under dynam-ically changing *** to monitor the workload on individual IoT nodes,the model incorporates long-term data dependencies,enabling adaptive resource distribution in real *** training process utilizes Min-Max normalization and grid search for hyperparameter tuning,ensuring high resource utilization and consistent *** simulation results demonstrate the effectiveness of the proposed method,outperforming the state-of-the-art approaches,including Dynamic and Efficient Enhanced Load-Balancing(DEELB),Optimized Scheduling and Collaborative Active Resource-management(OSCAR),Convolutional Neural Network with Monarch Butterfly Optimization(CNN-MBO),and Autonomic Workload Prediction and Resource Allocation for Fog(AWPR-FOG).For example,in scenarios with low system utilization,the model achieved a resource utilization efficiency of 95%while maintaining a latency of just 15 ms,significantly exceeding the performance of comparative methods.
Frequency stability is crucial for the proper operation of the power grids. The changing landscapes in power systems, raised by continuously increasing demand and rapid decommissioning of conventional generation, have...
详细信息
The cybersecurity of the power grid has gained increasing attraction in today's smart grid system. The dynamic load-altering attack (DLAA), which causes under-frequency trips by injecting an attacking load, and th...
详细信息
Diffusion models have become a popular choice for representing actor policies in behavior cloning and offline reinforcement learning. This is due to their natural ability to optimize an expressive class of distributio...
详细信息
Diffusion models have become a popular choice for representing actor policies in behavior cloning and offline reinforcement learning. This is due to their natural ability to optimize an expressive class of distributions over a continuous space. However, previous works fail to exploit the score-based structure of diffusion models, and instead utilize a simple behavior cloning term to train the actor, limiting their ability in the actor-critic setting. In this paper, we present a theoretical framework linking the structure of diffusion model policies to a learned Q-function, by linking the structure between the score of the policy to the action gradient of the Q-function. We focus on off-policy reinforcement learning and propose a new policy update method from this theory, which we denote Q-score matching. Notably, this algorithm only needs to differentiate through the denoising model rather than the entire diffusion model evaluation, and converged policies through Q-score matching are implicitly multi-modal and explorative in continuous domains. We conduct experiments in simulated environments to demonstrate the viability of our proposed method and compare to popular baselines. Source code is available from the project website: https://***/qsm. Copyright 2024 by the author(s)
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...
详细信息
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water ***,it is crucial to analyze the relationship between these two *** this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics *** results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency *** analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H ***,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly *** findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
Minimizing the energy consumption to increase the life span and performance of multiprocessor system on chip(MPSoC)has become an integral chip design issue for multiprocessor *** performance measurement of computation...
详细信息
Minimizing the energy consumption to increase the life span and performance of multiprocessor system on chip(MPSoC)has become an integral chip design issue for multiprocessor *** performance measurement of computational systems is changing with the advancement in *** to shrinking and smaller chip size power densities onchip are increasing rapidly that increasing chip temperature in multi-core embedded *** operating speed of the device decreases when power consumption reaches a threshold that causes a delay in complementary metal oxide semiconductor(CMOS)circuits because high on-chip temperature adversely affects the life span of the *** this paper an energy-aware dynamic power management technique based on energy aware earliest deadline first(EA-EDF)scheduling is proposed for improving the performance and reliability by reducing energy and power consumption in the system on chip(SOC).Dynamic power management(DPM)enables MPSOC to reduce power and energy consumption by adopting a suitable core configuration for task *** migration avoids peak temperature values in the multicore *** utilization factor(ui)on central processing unit(CPU)core consumes more energy and increases the temperature *** technique switches the core bymigrating such task to a core that has less temperature and is in a low power *** proposed EA-EDF scheduling technique migrates load on different cores to attain stability in temperature among multiple cores of the CPU and optimized the duration of the idle and sleep periods to enable the low-temperature *** effectiveness of the EA-EDF approach reduces the utilization and energy consumption compared to other existing methods and *** simulation results show the improvement in performance by optimizing 4.8%on u_(i) 9%,16%,23%and 25%at 520 MHz operating frequency as compared to other energy-aware techniques for MPSoCs when the least number of tasks is in running state and can
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
作者:
Ramzan, AneeqaMustafa, RafayKamran, YashfaNUTECH
Department of Electrical Engineering Islamabad Pakistan GIKI
Faculty of Computer Science and Engg. Swabi Topi Pakistan IIUI
Department of Electrical and Computer Engineering Pakistan
Providing adequate clinical and technical aid to blinds and visually impaired persons can be very challenging as it put financial strain on families due to the medical examination, treatment, surgical procedures and a...
详细信息
This study uses quantum-inspired techniques to ad-dress the DC optimal power flow problem considering frequency constraints. Although numerous analytical and data-driven meth-ods have been developed to solve DC-OPF un...
详细信息
Traditional volume surface integral equation for analysis of metal-dielectric composites requires the target mesh to be conformal, which leads to over-meshing of the multi-scale model and reduces the solution efficien...
详细信息
暂无评论