咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 29 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 25 篇 工学
    • 22 篇 计算机科学与技术...
    • 21 篇 软件工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 生物工程
    • 14 篇 光学工程
    • 3 篇 电气工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 2 篇 核科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 信息与通信工程
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 安全科学与工程
  • 17 篇 理学
    • 14 篇 生物学
    • 5 篇 物理学
    • 3 篇 数学
    • 2 篇 化学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 12 篇 医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 9 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 3 篇 管理学
    • 2 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 6 篇 generative adver...
  • 4 篇 magnetic resonan...
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 tumors
  • 2 篇 training
  • 1 篇 surveys
  • 1 篇 analysis
  • 1 篇 knowledge engine...
  • 1 篇 segmentation
  • 1 篇 dissection
  • 1 篇 mixed reality
  • 1 篇 dynamical system...
  • 1 篇 image segmentati...
  • 1 篇 aorta
  • 1 篇 network topology
  • 1 篇 computed tomogra...
  • 1 篇 cardiovascular d...
  • 1 篇 inference algori...
  • 1 篇 computerized tom...

机构

  • 19 篇 computer algorit...
  • 9 篇 partner site ess...
  • 8 篇 university medic...
  • 7 篇 university medic...
  • 6 篇 institute of com...
  • 4 篇 department of or...
  • 4 篇 institute of med...
  • 4 篇 department of ph...
  • 3 篇 university medic...
  • 3 篇 department of or...
  • 3 篇 center algoritmi...
  • 3 篇 institute of com...
  • 2 篇 oxford e-researc...
  • 2 篇 school of social...
  • 2 篇 school of comput...
  • 2 篇 center algoritmi...
  • 2 篇 numerical algori...
  • 2 篇 scientific compu...
  • 2 篇 portland state u...
  • 2 篇 college of arts ...

作者

  • 20 篇 egger jan
  • 11 篇 kleesiek jens
  • 10 篇 gsaxner christin...
  • 10 篇 li jianning
  • 9 篇 pepe antonio
  • 7 篇 ferreira andré
  • 7 篇 alves victor
  • 4 篇 pomykala kelsey ...
  • 4 篇 jan egger
  • 3 篇 jens kleesiek
  • 3 篇 jin yuan
  • 3 篇 puladi behrus
  • 2 篇 rempe moritz
  • 2 篇 higgins vanessa
  • 2 篇 nurmikko-fuller ...
  • 2 篇 victor alves
  • 2 篇 duckles beth
  • 2 篇 philippe olivier
  • 2 篇 ford heather
  • 2 篇 balzano melissa

语言

  • 26 篇 英文
  • 3 篇 其他
检索条件"机构=Computer Algorithms for Medicine Laboratory"
29 条 记 录,以下是11-20 订阅
排序:
Data Descriptor: Computed tomography data collection of the complete human mandible and valid clinical ground truth models
arXiv
收藏 引用
arXiv 2019年
作者: Wallner, Jürgen Mischak, Irene Egger, Jan Department of Oral and Maxillofacial Surgery Medical University of Graz Auenbruggerplatz 5/1 Graz8036 Austria Computer Algorithms for Medicine Laboratory Graz Austria University Clinic of Dental Medicine and Oral Health Medical University of Graz Billrothgasse 4 Graz8010 Austria Institute for Computer Graphics and Vision Graz University of Technology Inffeldgasse 16c/II Graz8010 Austria
Image-based algorithmic software segmentation is an increasingly important topic in many medical fields. Algorithmic segmentation is used for medical three-dimensional visualization, diagnosis or treatment support, es... 详细信息
来源: 评论
Medical deep learning-A systematic meta-review
arXiv
收藏 引用
arXiv 2020年
作者: Egger, Jan Gsaxner, Christina Pepe, Antonio Pomykala, Kelsey L. Jonske, Frederic Kurz, Manuel Li, Jianning Kleesiek, Jens Institute of Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Inffeldgasse 16 Styria Graz8010 Austria Department of Oral & Maxillofacial Surgery Medical University of Graz Auenbruggerplatz 5/1 Styria Graz8036 Austria Computer Algorithms for Medicine Laboratory Styria Graz Austria University Medicine Essen Girardetstraße 2 Essen45131 Germany University Medicine Essen Hufelandstraße 55 Essen45147 Germany Partner Site Essen Hufelandstraße 55 Essen45147 Germany
Deep learning has remarkably impacted several different scientific disciplines over the last few years. For example, in image processing and analysis, deep learning algorithms were able to outperform other cutting-edg... 详细信息
来源: 评论
Ten simple rules for measuring the impact of workshops
收藏 引用
PLoS Computational Biology 2018年 第8期14卷 e1006191-e1006191页
作者: Sufi, Shoaib Nenadic, Aleksandra Silva, Raniere Duckles, Beth Simera, Iveta de Beyer, Jennifer A. Struthers, Caroline Nurmikko-Fuller, Terhi Bellis, Louisa Miah, Wadud Wilde, Adriana Emsley, Iain Philippe, Olivier Balzano, Melissa Coelho, Sara Ford, Heather Jones, Catherine Higgins, Vanessa School of Computer Science University of Manchester Manchester United Kingdom Portland State University PortlandOR United States UK EQUATOR Centre Centre for Statistics in Medicine Nuffield Department of Orthopaedics Rheumatology Musculoskeletal Sciences University of Oxford Oxford United Kingdom College of Arts and Social Sciences Australian National University Canberra Australia Cancer Research UK Cambridge Centre University of Cambridge Cambridge United Kingdom Numerical Algorithms Group Oxford United Kingdom School of Computer Science University of St. Andrews St. Andrews United Kingdom Oxford e-Research Centre University of Oxford Oxford United Kingdom Electronics and Computer Science University of Southampton Southampton United Kingdom ELIXIR Hub Wellcome Genome Campus Cambridge United Kingdom EGI Foundation Amsterdam Netherlands School of Media and Communication University of Leeds Leeds United Kingdom Scientific Computing Department Science and Technology Facilities Council Rutherford Appleton Laboratory Didcot United Kingdom School of Social Sciences University of Manchester Manchester United Kingdom
Workshops are used to explore a specific topic, to transfer knowledge, to solve identified problems, or to create something new. In funded research projects and other research endeavours, workshops are the mechanism u... 详细信息
来源: 评论
How we won BraTS 2023 Adult Glioma challenge? Just faking it! Enhanced Synthetic Data Augmentation and Model Ensemble for brain tumour segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Ferreira, André Solak, Naida Li, Jianning Dammann, Philipp Kleesiek, Jens Alves, Victor Egger, Jan Center ALGORITMI/LASI University of Minho Braga4710-057 Portugal Computer Algorithms for Medicine Laboratory Graz Austria University Medicine Essen Girardetstraße 2 Essen45131 Germany University Medicine Essen Hufelandstraße 55 Essen45147 Germany Partner Site Essen Hufelandstraße 55 Essen45147 Germany Institute of Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 Graz8010 Austria Department of Neurosurgery and Spine Surgery University Hospital Essen Essen Germany
Deep Learning is the state-of-the-art technology for segmenting brain tumours. However, this requires a lot of high-quality data, which is difficult to obtain, especially in the medical field. Therefore, our solutions... 详细信息
来源: 评论
AutoPET Challenge: Combining nn-Unet with Swin UNETR Augmented by Maximum Intensity Projection Classifier
arXiv
收藏 引用
arXiv 2022年
作者: Heiliger, Lars Marinov, Zdravko Hasin, Max Ferreira, André Fragemann, Jana Pomykala, Kelsey Murray, Jacob Kersting, David Alves, Victor Stiefelhagen, Rainer Egger, Jan Kleesiek, Jens Institute for Ai in Medicine University Hospital Essen Essen Germany University Medicine Essen Essen Germany Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe Germany Center Algoritmi University of Minho Braga Portugal Computer Algorithms for Medicine Laboratory Graz Austria Department of Nuclear Medicine University Hospital Essen Essen Germany Essen Germany West German Cancer Center Essen Germany HIDSS4Health - Helmholtz Information Data Science School for Health Heidelberg Karlsruhe Germany
Tumor volume and changes in tumor characteristics over time are important biomarkers for cancer therapy. In this context, FDGPET/CT scans are routinely used for staging and re-staging of cancer, as the radiolabeled fl... 详细信息
来源: 评论
k-strip: A novel segmentation algorithm in k-space for the application of skull stripping
arXiv
收藏 引用
arXiv 2022年
作者: Rempe, Moritz Mentzel, Florian Pomykala, Kelsey L. Haubold, Johannes Nensa, Felix Kröninger, Kevin Egger, Jan Kleesiek, Jens University Hospital Essen Girardetstraße 2 Essen45131 Germany The Department of Physics of the Technical University Dortmund Otto-Hahn-Straße 4a Dortmund44227 Germany The Computer Algorithms for Medicine Laboratory Graz8010 Austria The Institute of Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 Graz8010 Austria University Medicine Essen Hufelandstraße 55 Essen45147 Germany Partner Site Essen Hufelandstraße 55 Essen45147 Germany
We present a novel deep learning-based skull stripping algorithm for magnetic resonance imaging (MRI) that works directly in the information rich complex valued k-space. Using three datasets from different institution... 详细信息
来源: 评论
Deep learning - A first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
arXiv
收藏 引用
arXiv 2020年
作者: Egger, Jan Pepe, Antonio Gsaxner, Christina Jin, Yuan Li, Jianning Kern, Roman Institute of Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral and Maxillofacial Surgery Medical University of Graz Graz Austria University Medicine Essen Essen Germany Research Center for Connected Healthcare Big Data Zhejiang Lab Zhejiang Hangzhou China Research Unit Experimental Neurotraumatology Department of Neurosurgery Medical University of Graz Graz Austria Knowledge Discovery Know-Center Graz Austria Institute of Interactive Systems and Data Science Graz University of Technology Graz Austria
Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the l... 详细信息
来源: 评论
Improved Multi-Task Brain Tumour Segmentation with Synthetic Data Augmentation
arXiv
收藏 引用
arXiv 2024年
作者: Ferreira, André Jesus, Tiago Puladi, Behrus Kleesiek, Jens Alves, Victor Egger, Jan Center Algoritmi / LASI University of Minho Braga4710-057 Portugal Computer Algorithms for Medicine Laboratory Graz Austria University Medicine Essen Girardetstraße 2 Essen45131 Germany School of Medicine University of Minho Braga Portugal ICVS/3B’s – PT Government Associate Laboratory Guimarães Braga Portugal University Medicine Essen Hufelandstraße 55 Essen45147 Germany Partner Site Essen Hufelandstraße 55 Essen45147 Germany Institute of Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 Graz8010 Austria Institute of Medical Informatics University Hospital RWTH Aachen Aachen Germany Department of Oral and Maxillofacial Surgery University Hospital RWTH Aachen Aachen Germany Department of Physics TU Dortmund University Dortmund Germany
This paper presents the winning solution of task 1 and the third-placed solution of task 3 of the BraTS challenge. The use of automated tools in clinical practice has increased due to the development of more and more ... 详细信息
来源: 评论
Brain Tumour Removing and Missing Modality Generation using 3D Wavelet Diffusion Model
arXiv
收藏 引用
arXiv 2024年
作者: Ferreira, André Luijten, Gijs Puladi, Behrus Kleesiek, Jens Alves, Victor Egger, Jan Center Algoritmi LASI University of Minho Braga4710-057 Portugal Computer Algorithms for Medicine Laboratory Graz Austria University Medicine Essen Girardetstraße 2 Essen45131 Germany University Medicine Essen Hufelandstraße 55 Essen45147 Germany Partner Site Essen Hufelandstraße 55 Essen45147 Germany Institute of Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 Graz8010 Austria Institute of Medical Informatics University Hospital RWTH Aachen Aachen Germany Department of Oral and Maxillofacial Surgery University Hospital RWTH Aachen Aachen Germany Department of Physics TU Dortmund University Dortmund Germany
This paper presents the second-placed solution for task 8 and the participation solution for task 7 of BraTS 2024. The adoption of automated brain analysis algorithms to support clinical practice is increasing. Howeve... 详细信息
来源: 评论
AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases Treatment: Status Quo
arXiv
收藏 引用
arXiv 2021年
作者: Jin, Yuan Pepe, Antonio Li, Jianning Gsaxner, Christina Zhao, Fen-Hua Pomykala, Kelsey L. Kleesiek, Jens Frangi, Alejandro F. Egger, Jan Institute of Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 Graz8010 Austria Computer Algorithms for Medicine Laboratory Graz Austria Research Center for Connected Healthcare Big Data ZhejiangLab Zhejiang Hangzhou311121 China Girardetstraße 2 Essen45131 Germany Department of Radiology Affiliated Dongyang Hospital of Wenzhou Medical University Zhejiang Dongyang322100 China Hufelandstraße 55 Essen45147 Germany Partner Site Essen Hufelandstraße 55 Essen45147 Germany School of Computing University of Leeds Leeds United Kingdom School of Medicine University of Leeds Leeds United Kingdom
The aortic vessel tree is composed of the aorta and its branching arteries, and plays a key role in supplying the whole body with blood. Aortic diseases, like aneurysms or dissections, can lead to an aortic rupture, w... 详细信息
来源: 评论