咨询与建议

限定检索结果

文献类型

  • 218 篇 期刊文献
  • 119 篇 会议
  • 1 册 图书

馆藏范围

  • 338 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 210 篇 工学
    • 126 篇 计算机科学与技术...
    • 87 篇 软件工程
    • 61 篇 信息与通信工程
    • 40 篇 电子科学与技术(可...
    • 35 篇 光学工程
    • 28 篇 电气工程
    • 18 篇 控制科学与工程
    • 17 篇 生物工程
    • 11 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 10 篇 动力工程及工程热...
    • 9 篇 生物医学工程(可授...
    • 8 篇 机械工程
    • 8 篇 化学工程与技术
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
  • 171 篇 理学
    • 87 篇 物理学
    • 67 篇 数学
    • 28 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 11 篇 化学
    • 9 篇 天文学
    • 9 篇 系统科学
  • 35 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 公共卫生与预防医...
  • 6 篇 农学
  • 4 篇 法学
  • 3 篇 教育学
  • 2 篇 经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 qubits
  • 12 篇 quantum algorith...
  • 8 篇 machine learning
  • 7 篇 quantum computat...
  • 6 篇 computer science
  • 6 篇 conferences
  • 5 篇 quantum simulati...
  • 5 篇 deep neural netw...
  • 5 篇 signal processin...
  • 5 篇 quantum error co...
  • 5 篇 quantum computer...
  • 5 篇 quantum gates
  • 4 篇 data mining
  • 4 篇 switches
  • 4 篇 atoms
  • 4 篇 stochastic syste...
  • 4 篇 complexity theor...
  • 4 篇 hardware
  • 4 篇 data structures
  • 4 篇 synchronization

机构

  • 37 篇 ntt computer and...
  • 32 篇 ntt computer and...
  • 17 篇 ntt computer and...
  • 16 篇 jst presto 4-1-8...
  • 16 篇 purple mountain ...
  • 13 篇 jst presto 4-1-8...
  • 12 篇 ntt communicatio...
  • 11 篇 the purple mount...
  • 11 篇 the department o...
  • 9 篇 school of scienc...
  • 8 篇 graduate school ...
  • 7 篇 sony computer sc...
  • 7 篇 department of ap...
  • 7 篇 computer and dat...
  • 6 篇 royal stoke univ...
  • 6 篇 cambridge univer...
  • 6 篇 graduate school ...
  • 6 篇 the national mob...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...

作者

  • 26 篇 suzuki yasunari
  • 20 篇 tokunaga yuuki
  • 20 篇 endo suguru
  • 17 篇 zhang rui
  • 16 篇 zeng yong
  • 14 篇 yuuki tokunaga
  • 14 篇 kumagai atsutosh...
  • 13 篇 jin shi
  • 12 篇 nielsen frank
  • 12 篇 yasunari suzuki
  • 11 篇 matsuzaki yuichi...
  • 11 篇 suguru endo
  • 8 篇 fujiwara yasuhir...
  • 8 篇 ryo masumura
  • 8 篇 shinobu saito
  • 7 篇 hakoshima hideak...
  • 7 篇 chijiwa daiki
  • 7 篇 yoshioka nobuyuk...
  • 7 篇 masumura ryo
  • 7 篇 asaoka rui

语言

  • 313 篇 英文
  • 25 篇 其他
  • 1 篇 日文
检索条件"机构=Computer And Data Science Laboratories"
338 条 记 录,以下是81-90 订阅
排序:
TRANSFERRING LEARNING TRAJECTORIES OF NEURAL NETWORKS
arXiv
收藏 引用
arXiv 2023年
作者: Chijiwa, Daiki NTT Computer and Data Science Laboratories NTT Corporation Japan
Training deep neural networks (DNNs) is computationally expensive, which is problematic especially when performing duplicated or similar training runs in model ensemble or fine-tuning pre-trained models, for example. ... 详细信息
来源: 评论
OnDA-DETR: Online Domain Adaptation for Detection Transformers with Self-Training Framework
OnDA-DETR: Online Domain Adaptation for Detection Transforme...
收藏 引用
IEEE International Conference on Image Processing
作者: Satoshi Suzuki Taiga Yamane Naoki Makishima Keita Suzuki Atsushi Ando Ryo Masumura NTT Computer and Data Science Laboratories NTT Corporation Japan
This paper presents a novel method for online domain adaptation (OnDA) for DEtection TRansformer (DETR)-based object detection models called OnDA-DETR. OnDA is a domain adaptation paradigm that adapts a model trained ...
来源: 评论
Open-Set Recognition for Facial-Expression Recognition
Open-Set Recognition for Facial-Expression Recognition
收藏 引用
IEEE International Conference on Image Processing
作者: Mihiro Uchida Shota Orihashi Akihiko Takashima Yoshihiro Yamazaki Ryo Masumura NTT Computer and Data Science Laboratories NTT Corporation Japan
We address distinguishing whether an input is a facial image by learning only a facial-expression recognition (FER) dataset. To avoid misclassification in FER, it is necessary to distinguish whether the input is a fac...
来源: 评论
META-LEARNING TO CALIBRATE GAUSSIAN PROCESSES WITH DEEP KERNELS FOR REGRESSION UNCERTAINTY ESTIMATION A PREPRINT
arXiv
收藏 引用
arXiv 2023年
作者: Iwata, Tomoharu Kumagai, Atsutoshi NTT Communication Science Laboratories NTT Corporation NTT Computer and Data Science Laboratories NTT Corporation
Although Gaussian processes (GPs) with deep kernels have been succesfully used for meta-learning in regression tasks, its uncertainty estimation performance can be poor. We propose a meta-learning method for calibrati... 详细信息
来源: 评论
Dispute resolution in accessible voting systems: The design and use of audiotegrity
收藏 引用
4th International Conference on E-Voting and Identity, Vote-ID 2013
作者: Kaczmarek, Tyler Wittrock, John Carback, Richard Florescu, Alex Rubio, Jan Runyan, Noel Vora, Poorvi L. Zagórski, Filip Department of Computer Science George Washington University United States Network and Information Concepts Group Charles Stark Draper Laboratories United States Personal Data Systems United States Institute of Mathematics and Computer Science Wroclaw University of Technology Poland
We describe in detail dispute resolution problems with cryptographic voting systems that do not produce a paper record of the unencrypted vote. With these in mind, we describe the design and use of Audiotegrity - a cr... 详细信息
来源: 评论
Adversarial Finetuning with Latent Representation Constraint to Mitigate Accuracy-Robustness Tradeoff
Adversarial Finetuning with Latent Representation Constraint...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Satoshi Suzuki Shin’ya Yamaguchi Shoichiro Takeda Sekitoshi Kanai Naoki Makishima Atsushi Ando Ryo Masumura NTT Computer and Data Science Laboratories Kyoto University NTT Human Informatics Laboratories
This paper addresses the tradeoff between standard accuracy on clean examples and robustness against adversarial examples in deep neural networks (DNNs). Although adversarial training (AT) improves robustness, it degr...
来源: 评论
Sharing knowledge for meta-learning with feature descriptions  22
Sharing knowledge for meta-learning with feature description...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Tomoharu Iwata Atsutoshi Kumagai NTT Communication Science Laboratories Kyoto Japan NTT Computer and Data Science Laboratories Tokyo Japan
Language is an important tool for humans to share knowledge. We propose a meta-learning method that shares knowledge across supervised learning tasks using feature descriptions written in natural language, which have ...
来源: 评论
A Security Verification Framework of Cryptographic Protocols Using Machine Learning
arXiv
收藏 引用
arXiv 2023年
作者: Ohno, Kentaro Nakabayashi, Misato NTT Computer & Data Science Laboratories Japan NTT Social Informatics Laboratories Japan
We propose a security verification framework for cryptographic protocols using machine learning. In recent years, as cryptographic protocols have become more complex, research on automatic verification techniques has ... 详细信息
来源: 评论
Robust Sparse Approximations for Stochastic Dynamical Systems
收藏 引用
IFAC-PapersOnLine 2017年 第1期50卷 14010-14015页
作者: Quinn, Christopher J. Pinar, Ali Gao, Jing Su, Lu School of Industrial Engineering Purdue University West LafayetteIN United States Data Sciences & Cyber Anal. Dept. Sandia National Laboratories LivermoreCA United States Dept. of Computer Science and Engineering University at Buffalo BuffaloNY United States
Inferring the exact topology of the interactions in a large, stochastic dynamical system from time-series data can often be prohibitive computationally and statistically without strong side information. One alternativ... 详细信息
来源: 评论
Adversarial Finetuning with Latent Representation Constraint to Mitigate Accuracy-Robustness Tradeoff
arXiv
收藏 引用
arXiv 2023年
作者: Suzuki, Satoshi Yamaguchi, Shinya Takeda, Shoichiro Kanai, Sekitoshi Makishima, Naoki Ando, Atsushi Masumura, Ryo NTT Computer and Data Science Laboratories Kyoto University Japan NTT Human Informatics Laboratories
This paper addresses the tradeoff between standard accuracy on clean examples and robustness against adversarial examples in deep neural networks (DNNs). Although adversarial training (AT) improves robustness, it degr... 详细信息
来源: 评论