咨询与建议

限定检索结果

文献类型

  • 110 篇 会议
  • 83 篇 期刊文献

馆藏范围

  • 193 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 131 篇 工学
    • 102 篇 计算机科学与技术...
    • 94 篇 软件工程
    • 30 篇 信息与通信工程
    • 22 篇 生物工程
    • 18 篇 控制科学与工程
    • 9 篇 仪器科学与技术
    • 9 篇 土木工程
    • 7 篇 光学工程
    • 7 篇 电气工程
    • 7 篇 化学工程与技术
    • 6 篇 机械工程
    • 5 篇 力学(可授工学、理...
    • 5 篇 电子科学与技术(可...
    • 5 篇 建筑学
    • 5 篇 生物医学工程(可授...
    • 4 篇 水利工程
    • 4 篇 交通运输工程
    • 4 篇 航空宇航科学与技...
  • 65 篇 理学
    • 38 篇 数学
    • 22 篇 生物学
    • 15 篇 物理学
    • 13 篇 统计学(可授理学、...
    • 7 篇 化学
    • 6 篇 大气科学
    • 4 篇 系统科学
  • 43 篇 管理学
    • 24 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 7 篇 教育学
    • 7 篇 教育学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
  • 4 篇 农学
  • 2 篇 医学

主题

  • 8 篇 education
  • 8 篇 semantics
  • 7 篇 data mining
  • 6 篇 conferences
  • 6 篇 knowledge engine...
  • 6 篇 computational mo...
  • 6 篇 forecasting
  • 5 篇 learning systems
  • 5 篇 deep learning
  • 5 篇 synthetic apertu...
  • 5 篇 students
  • 5 篇 data models
  • 5 篇 training
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 graph neural net...
  • 4 篇 embeddings
  • 3 篇 semantic segment...
  • 3 篇 recommender syst...
  • 3 篇 natural language...

机构

  • 31 篇 anhui province k...
  • 22 篇 state key labora...
  • 21 篇 henan key labora...
  • 16 篇 peng cheng labor...
  • 14 篇 school of comput...
  • 13 篇 henan engineerin...
  • 11 篇 college of compu...
  • 9 篇 anhui province k...
  • 8 篇 intelligent perc...
  • 8 篇 school of comput...
  • 8 篇 henan engineerin...
  • 8 篇 school of comput...
  • 7 篇 school of comput...
  • 7 篇 university of sc...
  • 7 篇 key laboratory o...
  • 6 篇 shanxi province ...
  • 6 篇 zte corporation
  • 6 篇 anhui province k...
  • 6 篇 iflytek research...
  • 6 篇 peking universit...

作者

  • 35 篇 liu qi
  • 33 篇 chen enhong
  • 23 篇 qi liu
  • 21 篇 huang zhenya
  • 19 篇 enhong chen
  • 11 篇 xu linli
  • 10 篇 tong yang
  • 10 篇 zhenya huang
  • 9 篇 yang tong
  • 9 篇 bin cui
  • 9 篇 wang fei
  • 8 篇 xiaoke zhu
  • 8 篇 wang shijin
  • 7 篇 guo zhengwei
  • 7 篇 xiaopan chen
  • 7 篇 cui bin
  • 7 篇 zhu xiaoke
  • 7 篇 jianhui ma
  • 7 篇 su yu
  • 6 篇 zhang zaixi

语言

  • 158 篇 英文
  • 34 篇 其他
  • 2 篇 中文
检索条件"机构=Computer Application and Data Analysis Laboratory"
193 条 记 录,以下是181-190 订阅
排序:
A generalization theory based on independent and task-identically distributed assumption
arXiv
收藏 引用
arXiv 2019年
作者: Zheng, Guanhua Sang, Jitao Li, Houqiang Yu, Jian Xu, Changsheng University of Science and Technology of China School of Computer and Information Technology Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing100044 China Chinese Academy of Sciences Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Hefei230026 China National Lab of Pattern Recognition Institute of Automation CAS Beijing100190 China University of Chinese Academy of Sciences
—Existing generalization theories analyze the generalization performance mainly based on the model complexity and training process. The ignorance of the task properties, which results from the widely used IID assumpt... 详细信息
来源: 评论
Skeptical deep learning with distribution correction
arXiv
收藏 引用
arXiv 2018年
作者: An, Mingxiao Chen, Yongzhou Liu, Qi Liu, Chuanren Lv, Guangyi Wu, Fangzhao Ma, Jianhui Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China Drexel University Microsoft Research Asia China
Recently deep neural networks have been successfully used for various classification tasks, especially for problems with massive perfectly labeled training data. However, it is often costly to have large-scale credibl... 详细信息
来源: 评论
How images inspire poems: Generating classical Chinese poetry from images with memory networks
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Linli Jiang, Liang Qin, Chuan Wang, Zhe Du, Dongfang Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China AI Department Ant Financial Services Group
With the recent advances of neural models and natural language processing, automatic generation of classical Chinese poetry has drawn significant attention due to its artistic and cultural value. Previous works mainly... 详细信息
来源: 评论
Non-autoregressive neural machine translation with enhanced decoder input
arXiv
收藏 引用
arXiv 2018年
作者: Guo, Junliang Tan, Xu He, Di Qin, Tao Xu, Linli Liu, Tie-Yan Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China Microsoft Research School of EECS Peking University
Non-autoregressive translation (NAT) models, which remove the dependence on previous target tokens from the inputs of the decoder, achieve significantly inference speedup but at the cost of inferior accuracy compared ... 详细信息
来源: 评论
Research on the Brain-inspired Cross-modal Neural Cognitive Computing Framework
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Yang Key Laboratory of Big Data Analysis and Processing of Henan province Intelligent Technology and Application Engineering Research Centre of Henan province College of Computer Science and Information Engineering Henan University Kaifeng475004 China
To address modeling problems of brain-inspired intelligence, this thesis is focused on researching in the semantic-oriented framework design for multimedia and multimodal information. The Multimedia Neural Cognitive C... 详细信息
来源: 评论
A Ship Draft Line Detection Method Based on Image Processing and Deep Learning
收藏 引用
Journal of Physics: Conference Series 2020年 第1期1575卷
作者: Zhong Wang Peibei Shi Chao Wu School of Computer Science and Technology Hefei Normal University No. 1688 Lianhua Road Hefei Anhui China Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China No. 96 Jinzhai Road Hefei Anhui China Network and Information Center University of Science and Technology of China No. 96 Jinzhai Road Hefei Anhui China
The traditional ship draft detection method mainly adopts the method of the human eye observation, which has the problems of large precision error and slow detection speed. Aiming at this problem, this paper proposes ...
来源: 评论
A Fatigue Driving Detection Method based on Deep Learning and Image Processing
收藏 引用
Journal of Physics: Conference Series 2020年 第1期1575卷
作者: Zhong Wang Peibei Shi Chao Wu School of Computer Science and Technology Hefei Normal University No. 1688 Lianhua Road Hefei Anhui China. Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China No. 96 Jinzhai Road Hefei Anhui China. Network and Information Center University of Science and Technology of China No. 96 Jinzhai Road Hefei Anhui China
Driving fatigue is one of the important causes of traffic accidents. It is of great significance to study fatigue driving detection algorithms to improve human life and property safety. This paper proposes a fatigue d...
来源: 评论
Aggregation Signature for Small Object Tracking
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei Ding, Wenrui Yang, Jinyu Murino, Vittorio Zhang, Baochang Han, Jungong Guo, Guodong School of Electrical and Information Engineering Beihang University Beijing China Unmanned System Research Institute Beihang University Beijing China School of Computer Science University of Birmingham British United Kingdom University of Verona Verona Italy Pattern Analysis and Computer Vision department Istituto Italiano di Tecnologia Genoa Italy School of Automation Science and Electrical Engineering Beihang University Beijing China Shenzhen Academy of Aerospace Technology Shenzhen China WMG Data Science Group University of Warwick CoventryCV4 7AL United Kingdom Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application
—Small object tracking becomes an increasingly important task, which however has been largely unexplored in computer vision. The great challenges stem from the facts that: 1) small objects show extreme vague and vari... 详细信息
来源: 评论
Enhancing network embedding with auxiliary information: An explicit matrix factorization perspective
arXiv
收藏 引用
arXiv 2017年
作者: Guo, Junliang Xu, Linli Huang, Xunpeng Chen, Enhong Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China
Recent advances in the field of network embedding have shown the low-dimensional network representation is playing a critical role in network analysis. However, most of the existing principles of network embedding do ... 详细信息
来源: 评论
A Framework for Passengers Demand Prediction and Recommendation
A Framework for Passengers Demand Prediction and Recommendat...
收藏 引用
IEEE International Conference on Services Computing (SCC)
作者: Kai Zhang Zhiyong Feng Shizhan Chen Keman Huang Guiling Wang Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China School of Computer Science and Technologv Tianjin University Tianjin China School of Computer Software Tianjin University Tianjin China Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data Beijing China
With the rapid development of mobile internet and wireless network technologies, more and more people use the mobile app to call a taxicab to pick them up. Therefore, understanding the passengers' travel demand be... 详细信息
来源: 评论