咨询与建议

限定检索结果

文献类型

  • 110 篇 会议
  • 83 篇 期刊文献

馆藏范围

  • 193 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 131 篇 工学
    • 102 篇 计算机科学与技术...
    • 94 篇 软件工程
    • 30 篇 信息与通信工程
    • 22 篇 生物工程
    • 18 篇 控制科学与工程
    • 9 篇 仪器科学与技术
    • 9 篇 土木工程
    • 7 篇 光学工程
    • 7 篇 电气工程
    • 7 篇 化学工程与技术
    • 6 篇 机械工程
    • 5 篇 力学(可授工学、理...
    • 5 篇 电子科学与技术(可...
    • 5 篇 建筑学
    • 5 篇 生物医学工程(可授...
    • 4 篇 水利工程
    • 4 篇 交通运输工程
    • 4 篇 航空宇航科学与技...
  • 65 篇 理学
    • 38 篇 数学
    • 22 篇 生物学
    • 15 篇 物理学
    • 13 篇 统计学(可授理学、...
    • 7 篇 化学
    • 6 篇 大气科学
    • 4 篇 系统科学
  • 43 篇 管理学
    • 24 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 7 篇 教育学
    • 7 篇 教育学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
  • 4 篇 农学
  • 2 篇 医学

主题

  • 8 篇 education
  • 8 篇 semantics
  • 7 篇 data mining
  • 6 篇 conferences
  • 6 篇 knowledge engine...
  • 6 篇 computational mo...
  • 6 篇 forecasting
  • 5 篇 learning systems
  • 5 篇 deep learning
  • 5 篇 synthetic apertu...
  • 5 篇 students
  • 5 篇 data models
  • 5 篇 training
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 graph neural net...
  • 4 篇 embeddings
  • 3 篇 semantic segment...
  • 3 篇 recommender syst...
  • 3 篇 natural language...

机构

  • 31 篇 anhui province k...
  • 22 篇 state key labora...
  • 21 篇 henan key labora...
  • 16 篇 peng cheng labor...
  • 14 篇 school of comput...
  • 13 篇 henan engineerin...
  • 11 篇 college of compu...
  • 9 篇 anhui province k...
  • 8 篇 intelligent perc...
  • 8 篇 school of comput...
  • 8 篇 henan engineerin...
  • 8 篇 school of comput...
  • 7 篇 school of comput...
  • 7 篇 university of sc...
  • 7 篇 key laboratory o...
  • 6 篇 shanxi province ...
  • 6 篇 zte corporation
  • 6 篇 anhui province k...
  • 6 篇 iflytek research...
  • 6 篇 peking universit...

作者

  • 35 篇 liu qi
  • 33 篇 chen enhong
  • 23 篇 qi liu
  • 21 篇 huang zhenya
  • 19 篇 enhong chen
  • 11 篇 xu linli
  • 10 篇 tong yang
  • 10 篇 zhenya huang
  • 9 篇 yang tong
  • 9 篇 bin cui
  • 9 篇 wang fei
  • 8 篇 xiaoke zhu
  • 8 篇 wang shijin
  • 7 篇 guo zhengwei
  • 7 篇 xiaopan chen
  • 7 篇 cui bin
  • 7 篇 zhu xiaoke
  • 7 篇 jianhui ma
  • 7 篇 su yu
  • 6 篇 zhang zaixi

语言

  • 149 篇 英文
  • 43 篇 其他
  • 2 篇 中文
检索条件"机构=Computer Application and Data Analysis Laboratory"
193 条 记 录,以下是41-50 订阅
排序:
Towards the Identifiability and Explainability for Personalized Learner Modeling: An Inductive Paradigm  24
Towards the Identifiability and Explainability for Personali...
收藏 引用
33rd ACM Web Conference, WWW 2024
作者: Li, Jiatong Liu, Qi Wang, Fei Liu, Jiayu Huang, Zhenya Yao, Fangzhou Zhu, Linbo Su, Yu University of Science and Technology of China Anhui Province Key Laboratory of Big Data Analysis and Application State Key Laboratory of Cognitive Intelligence Hefei China University of Science and Technology of China School of Computer Science and Technology Hefei Comprehensive National Science Center Institute of Artificial Intelligence Hefei China Hefei Normal University Hefei Comprehensive National Science Center Institute of Artificial Intelligence Hefei China
Personalized learner modeling using cognitive diagnosis (CD), which aims to model learners' cognitive states by diagnosing learner traits from behavioral data, is a fundamental yet significant task in many web lea... 详细信息
来源: 评论
Legal Judgment Prediction with Multiple Perspectives on Civil Cases  1st
Legal Judgment Prediction with Multiple Perspectives on Civi...
收藏 引用
1st CAAI International Conference on Artificial Intelligence, CICAI 2021
作者: Zhao, Lili Yue, Linan An, Yanqing Liu, Ye Zhang, Kai He, Weidong Chen, Yanmin Yuan, Senchao Liu, Qi Anhui Province Key Laboratory of Big Data Analysis and Application School of Data Science and School of Computer Science and Technology University of Science and Technology of China Hefei China
Legal Judgment Prediction, which aims at predicting the judgment result based on case materials, is an essential task in Legal Intelligence. Most existing studies have analyzed and modeled criminal cases as a whole, w... 详细信息
来源: 评论
CoCGAN: Contrastive Learning for Adversarial Category Text Generation  29
CoCGAN: Contrastive Learning for Adversarial Category Text G...
收藏 引用
29th International Conference on Computational Linguistics, COLING 2022
作者: Sheng, Xin Xu, Linli Xu, Yinlong Bao, Changcun Chen, Huang Ren, Bo Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China China School of Computer Science and Technology University of Science and Technology of China China State Key Laboratory of Cognitive Intelligence China Tencent Youtu Lab China
The task of generating texts of different categories has attracted more and more attention in the area of natural language generation recently. Meanwhile, generative adversarial net (GAN) has demonstrated its effectiv... 详细信息
来源: 评论
Communication-Efficient Distributed Learning with Local Immediate Error Compensation
arXiv
收藏 引用
arXiv 2024年
作者: Cheng, Yifei Shen, Li Xu, Linli Qian, Xun Wu, Shiwei Zhou, Yiming Zhang, Tie Tao, Dacheng Chen, Enhong The Anhui Province Key Lab of Big Data Analysis and Application State Key Laboratory of Cognitive Intelligence School of Data Science School of Computer Science University of Science and Technology China The JD Explore Academy China The Shanghai Artificial Intelligence Laboratory China
Gradient compression with error compensation has attracted significant attention with the target of reducing the heavy communication overhead in distributed learning. However, existing compression methods either perfo... 详细信息
来源: 评论
HyperCalm Sketch: One-Pass Mining Periodic Batches in data Streams
HyperCalm Sketch: One-Pass Mining Periodic Batches in Data S...
收藏 引用
International Conference on data Engineering
作者: Zirui Liu Chaozhe Kong Kaicheng Yang Tong Yang Ruijie Miao Qizhi Chen Yikai Zhao Yaofeng Tu Bin Cui School of Computer Science and National Engineering Laboratory for Big Data Analysis Technology and Application Peking University Beijing China Peng Cheng Laboratory Shenzhen China ZTE Corporation
Batch is an important pattern in data streams, which refers to a group of identical items that arrive closely. We find that some special batches that arrive periodically are of great value. In this paper, we formally ...
来源: 评论
Lightweight Transformer Network and Self-supervised Task for Kinship Verification  8
Lightweight Transformer Network and Self-supervised Task for...
收藏 引用
8th IEEE International Conference on computer and Communications, ICCC 2022
作者: Zhu, Xiaoke Li, Yunwei Li, Danyang Dong, Lingyun Chen, Xiaopan School of Computer and Information Engineering Henan University Kaifeng China Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng China Henan Engineering Research Center of Intelligent Technology and Application Henan University China
Kinship verification is one of the interesting and critical problems in computer vision research, with significant progress in the past decades. Meanwhile, Vision Transformer (VIT) has recently achieved impressive suc... 详细信息
来源: 评论
Semi-supervised Segmentation and Quantization Algorithm for Infarct Size Measurement of Rat Heart Sections  8
Semi-supervised Segmentation and Quantization Algorithm for ...
收藏 引用
8th IEEE International Conference on computer and Communications, ICCC 2022
作者: Zhu, Xiaoke Cai, Yulong Chen, Xiaopan Hu, Qi Dong, Lingyun Yuan, Caihong School of Computer and Information Engineering Henan University Kaifeng China Henan University Henan Key Laboratory of Big Data Analysis and Processing Kaifeng China Henan Engineering Research Center of Intelligent Technology and Application Henan University China
Segmentation of rat heart section images and infarct area quantization are essential components of infarct size measurement in processing data from animal experiments on ischemic heart disease. Previously, the task of... 详细信息
来源: 评论
Point-Level and Set-Level Deep Representation Learning for Cross-Modal Person Re-identification  8
Point-Level and Set-Level Deep Representation Learning for C...
收藏 引用
8th IEEE International Conference on computer and Communications, ICCC 2022
作者: Hu, Jihui Ye, Pengfei Li, Danyang Dong, Lingyun Chen, Xiaopan Zhu, Xiaoke School of Computer and Information Engineering Henan University Kaifeng China Henan University Henan Key Laboratory of Big Data Analysis and Processing Kaifeng China Henan University Henan Engineering Research Center of Intelligent Technology and Application China
In practice, significant modality differences usually exist between visible and infrared images, which makes visible-infrared Person Re-Identification (VI-ReID) a challenging research task. Due to the existing influen... 详细信息
来源: 评论
Inverse Markov Process Based Constrained Dynamic Graph Layout
收藏 引用
Journal of computer Science & Technology 2021年 第3期36卷 707-718页
作者: Shi-Ying Sheng Sheng-Tao Chen Xiao-Ju Dong Chun-Yuan Wu Xiao-Ru Yuan ParisTech Elite Institute of Technology Shanghai Jiao Tong UniversityShanghai 200240China Department of Computer Science and Engineering Shanghai Jiao Tong UniversityShanghai 200240China Key Laboratory of Machine Perception(Ministry of Education) National Engineering Laboratory for Big Data Analysis and ApplicationPeking UniversityBeijing 100080China
In online dynamic graph drawing,constraints over nodes and node pairs help preserve a coherent mental map in a sequence of *** the constraints is challenging due to the requirements of both preserving mental map and s... 详细信息
来源: 评论
PISketch: Finding Persistent and Infrequent Flows  3
PISketch: Finding Persistent and Infrequent Flows
收藏 引用
3rd ACM SIGCOMM 2022 Workshop on Formal Foundations and Security of Programmable Network Infrastructures, FFSPIN 2022
作者: Fan, Zhuochen Hu, Zhoujing Wu, Yuhan Guo, Jiarui Liu, Wenrui Yang, Tong Wang, Hengrui Xu, Yifei Uhlig, Steve Tu, Yaofeng School of Computer Science National Engineering Laboratory for Big Data Analysis Technology and Application Peking University China Computer Science Department University of California Los Angeles United States School of Electronic Engineering and Computer Science Queen Mary University of London United Kingdom ZTE Corporation China
Finding persistent and inactive activity periods is very helpful in practice, for example to detect intrusion activities. Most of the literature focuses on finding persistent flows or frequent flows. No previous work ... 详细信息
来源: 评论