The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Rec...
详细信息
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)***,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained *** paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity *** traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for *** emphasizes the low-frequency components by calculating their energy spectral density ***,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational ***,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone *** computational feasibility and data sensitivity of the proposed scheme are thoroughly ***,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,***,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%.
Road traffic management requires the ability to foresee geographical congestion conditions in an urban road traffic network. The proposed investigation is aimed to envisage the presence of blockage in a specific regio...
详细信息
As Flying Ad Hoc Networks (FANETs) continue to advance, ensuring robust security, privacy, and data reliability remains a significant challenge. This research presents a novel framework known as HE-FSMF-short for Homo...
详细信息
Street Lighting System is a crucial part of society's amenities and environment. Today's systems consume enormous amounts of electrical energy, for the automation of switches on/off of street lights. This resu...
详细信息
The area of brain-computer interface research is widely spreading as it has a diverse array of potential applications. Motor imagery classification is a boon to several people with motor impairment. Low accuracy and d...
详细信息
Deep learning technology has extensive application in the classification and recognition of medical images. However, several challenges persist in such application, such as the need for acquiring large-scale labeled d...
详细信息
Virtual Reality (VR) technology in health-care has emerged as a valuable tool for advancing diagnostic techniques and enhancing patient care. This research explores the application of VR in attention profile assessmen...
详细信息
This paper presents an approach to improve medical image retrieval, particularly for brain tumors, by addressing the gap between low-level visual and high-level perceived contents in MRI, X-ray, and CT scans. Traditio...
详细信息
This paper presents an approach to improve medical image retrieval, particularly for brain tumors, by addressing the gap between low-level visual and high-level perceived contents in MRI, X-ray, and CT scans. Traditional methods based on color, shape, or texture are less effective. The proposed solution uses machine learning to handle high-dimensional image features, reducing computational complexity and mitigating issues caused by artifacts or noise. It employs a genetic algorithm for feature reduction and a hybrid residual UNet(HResUNet) model for Region-of-Interest(ROI) segmentation and classification, with enhanced image preprocessing. The study examines various loss functions, finding that a hybrid loss function yields superior results, and the GA-HResUNet model outperforms the HResUNet. Comparative analysis with state-of-the-art models shows a 4% improvement in retrieval accuracy.
The classification of brain tumors has significant importance in the realm of clinical diagnosis and the implementation of appropriate treatment strategies. The process of diagnosing a brain tumor is time-consuming an...
详细信息
Working with Imbalance data in real-world problems is not so easy due to the different cardinality of classes. Several machine learning Techniques have been used to overcome this kind of problem for 100% original data...
详细信息
暂无评论