For a better understanding of the situation during a war or crisis, it is helpful to comprehend the public opinion. There are various social media networks which provide a platform for people across the world to expre...
详细信息
The efficiency of multi-objective evolutionary algorithms (MOEAs) in tackling issues with multiple objectives is examined. However, it is noted that current MOEA-based feature selection techniques often converge towar...
详细信息
The efficiency of multi-objective evolutionary algorithms (MOEAs) in tackling issues with multiple objectives is examined. However, it is noted that current MOEA-based feature selection techniques often converge towards the center of the Pareto front due to inadequate selection forces. The study proposes the utilization of a novel approach known as MOEA/D, which partitions complex multi-objective problems into smaller, more feasible single-objective sub-problems. Each sub-problem may then be addressed using an equal amount of computational resources. The predetermined size of the neighborhood used by MOEA/D may lead to a delay in the algorithm's merging and reduce the effectiveness of the failure. The paper proposes the Adaptive Neighbourhood Adjustment Strategy (ANAS) as a novel approach to improve the efficiency of multi-objective optimisation algorithms in order to tackle this issue. The ANAS algorithm allows for adaptive adjustment of the subproblem neighborhood size, hence enhancing the trade-off between merging and variety. In the following section of the study, a novel feature selection technique called MOGHHNS3/D-ANA is introduced. This technique utilizes ANAS to expand the potential solutions for a particular subproblem. The approach evaluates the chosen features using the Regulated Extreme Learning Machine (RELM) classifier on sixteen benchmark datasets. The experimental results demonstrate that MOGHHNS3/D-ANA outperforms four commonly employed multi-objective techniques in terms of accuracy, precision, recall, F1 score, coverage, hamming loss, ranking loss, and training time, error. The APBI approach in decomposition-based multi-objective optimization focuses on handling constraints by adjusting penalty parameters to guide the search towards feasible solutions. On the other hand, the ANA approach focuses on dynamically adjusting the neighborhood size or search direction based on the proximity of solutions in the detached space to adapt the search process.
In a collaborative social network data publishing setup, privacy preservation of individuals is a vital issue. Existing privacy-preserving techniques assume the existence of attackers from external data recipients and...
详细信息
Consumer confidence is, in the present time, a dilemma given the steadily rising number of deceptive and inaccurate AI-generated reviews on internet marketplaces. There is an urgent need for a thorough dataset, which ...
详细信息
Even if more and more high-quality public datasets are available, one of the biggest problems with deep learning for skin lesion diagnosis is the scarcity of training samples. Deep Convolutional Neural Networks (CNNs)...
详细信息
Classification of brain images is a very challenging problem among the most helpful and commonly employed procedures in the medical system. Deep learning, a subset of artificial intelligence, has pioneered new techniq...
详细信息
Smartphones are compatible and easily accessible compared to computers irrespective of place and time. Smartphones merge with our routine which acts as a medium of communication in several ways such as messaging, voic...
详细信息
The paper presents a combinatorial algorithm to find the straight skeleton of the inner isothetic cover of a digital object imposed on a uniform background grid. The isothetic polygon (orthogonal polygon) tightly insc...
详细信息
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented *** proposed approach is a combination of an enhanced grey wolf optimizer(E...
详细信息
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented *** proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal *** EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was *** train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was *** on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive *** consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)*** outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness.
The implementation of blockchain-based token transfers has emerged as a transformative tool for innovation and enhanced financial inclusion. To implement Blockchain based token transfers, smart contracts play a pivota...
详细信息
暂无评论