Parallel Disassembly Sequence Planning (DSP) deals with obtaining the order of disassembling the product with multiple parts disassembling simultaneously. Existing studies derive the product’s disassembly order based...
详细信息
Hair loss in males is a growing issue in every age group. Experts suggest remedies based on the stage, that is, the severity of hair loss. There is a discrepancy in the total number of stages in which hair loss can be...
详细信息
Software testing is a critical task that can be used to ensure the quality of the end product. Different types of applications process the input data with respect to a specific operation and its outcomes are generated...
详细信息
Multilevel thresholding plays a crucial role in image processing, with extensive applications in object detection, machine vision, medical imaging, and traffic control systems. It entails the partitioning of an image ...
详细信息
Technological advancements have brought a new era of growth for the healthcare industry. Nowadays, the security of healthcare data and the preservation of user privacy inside smart healthcare systems are being severel...
详细信息
This work introduces a novel Custom Question Answering (CQA) model leveraging Adam optimized Bidirectional Encoder Representations from Transformers (BERT-AO). This model tackles the challenge of combining textual and...
详细信息
Sign language serves as a vital mode of communication for the deaf and hard of hearing community, yet access to sign language content remains limited due to the lack of accurate and timely captioning. In this paper, a...
详细信息
Emotions are a vital semantic part of human correspondence. Emotions are significant for human correspondence as well as basic for human–computer cooperation. Viable correspondence between people is possibly achieved...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech recognition, and software engineering. Various deep learning techniques have been successfully employed to facilitate software engineering tasks, including code generation, software refactoring, and fault localization. Many studies have also been presented in top conferences and journals, demonstrating the applications of deep learning techniques in resolving various software engineering tasks. However,although several surveys have provided overall pictures of the application of deep learning techniques in software engineering,they focus more on learning techniques, that is, what kind of deep learning techniques are employed and how deep models are trained or fine-tuned for software engineering tasks. We still lack surveys explaining the advances of subareas in software engineering driven by deep learning techniques, as well as challenges and opportunities in each subarea. To this end, in this study, we present the first task-oriented survey on deep learning-based software engineering. It covers twelve major software engineering subareas significantly impacted by deep learning techniques. Such subareas spread out through the whole lifecycle of software development and maintenance, including requirements engineering, software development, testing, maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to revolutionize the whole discipline of software engineering, providing one survey covering as many subareas as possible in software engineering can help future research push forward the frontier of deep learning-based software engineering more systematically. For each of the selected subareas,we highlight the major advances achieved by applying deep learning techniques with pointers to the available datasets i
暂无评论