Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow...
详细信息
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow uncontrollably, forming a tumor on the skin. To prevent skin cancer from spreading and potentially leading to serious complications, it's critical to identify and treat it as early as possible. An innovative two-fold deep learning based skin cancer detection model is presented in this research work. Five main stages make up the proposed model: Preprocessing, segmentation, feature extraction, feature selection, and skin cancer detection. Initially, the Min–max contrast stretching and median filtering used to pre-process the collected raw image. From the pre-processed image, the Region of Intertest (ROI) is identified via optimized mask Region-based Convolutional Neural Network (R-CNN). Then, from the identified ROI areas, the texture features like Illumination-invariant Binary Gabor Pattern (II-BGP), Local Binary Pattern (LBP), Gray-Level Co-occurrence Matrix (GLCM), Color feature such as Color Correlogram and Histogram Intersection, and Shape feature including Moments, Area, Perimeter, Eccentricity, Average bending energy are extracted. To choose the optimal features from the extracted ones, the Golden Eagle Mutated Leader Optimization (GEMLO) is used. The proposed Golden Eagle Mutated Leader Optimization (GEMLO) is the conceptual amalgamation of the standard Mutated Leader Algorithm (MLA) and Golden Eagle Optimizer are used to select best features (GEO). The skin cancer detection is accomplished via two-fold-deep-learning-classifiers, that includes the Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The final outcome is the combination of the outcomes acquired from Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The PYTHON platform is being used to implement the suggested model. Using the curre
Emotions have a significant impact on how people make decisions. Due to its potential applications in various fields, emotion intensity detection has attracted a lot of attention recently. Several methods have been pr...
详细信息
In recent years, deep neural networks have achieved remarkable accuracy in computer vision tasks. With inference time being a crucial factor, particularly in dense prediction tasks such as semantic segmentation, knowl...
详细信息
Images are used widely nowadays. Images are used in many fields such as medicine to terrain mapping. There is a need to compress the images and represent them in shorter form for effective transmission. Several techni...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have be...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have been developed to tackle these ***,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional *** fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within *** traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of *** selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)*** this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious *** classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable *** the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive *** experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different *** outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%*** results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
The agriculture industry's production and food quality have been impacted by plant leaf diseases in recent years. Hence, it is vital to have a system that can automatically identify and diagnose diseases at an ini...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
The focus of this research is on addressing the inefficient management of Municipal Solid Waste (MSW), which often results in large quantities of waste being dumped into garbage bins. Previous approaches have struggle...
详细信息
This work proposes a novel and improved Butterfly Optimization Algorithm (BOA), known as LQBOA, to solve BOA’s inherent limitations. The LQBOA uses Lagrange interpolation and simple quadratic interpolation techniques...
详细信息
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A hi...
详细信息
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A highly sensitive DA electrochemical sensor was constructed by combining molybdenum disulfide quantum dots(MSQDs) with multiwalled carbon nanotubes(MWCNTs).The MSQDs were synthesized using the shear exfoliation *** sensors consist of MSQDs with Mo-S edge catalytic centers for the DA redox reaction,and MWCNTs amplify the sensor *** linearity of the sensor for the detection of DA was tested in the presence of ascorbic acid(AA,50 μmol·L-1) and uric acid(UA,200 μmol·L-1),and exhibited linearity from 2 to 966 μmol·L-1of DA with 0.097 μA(mol·L-1)-1sensitivity and a low limit of detection of0.6 μmol·L-1(the ratio between signal and noise,S/N=3).Moreover,the sensitivity and selectivity of the sensor were also studied using *** is no increase in amperometric current after adding the most potentially interfering *** sensor was successfully applied to recover DA in human blood sera ***,machine learning algorithms were operated to aid in the near-precise detection of DA in the heterogeneous mixture containing AA and *** algorithms facilitate the identification and quantification of DA amidst coexisting interferents,including AA,that are commonly present in biological matrices.
暂无评论