The segmentation of the iris is crucial and holds great importance within the medical image recognition area. Researchers have introduced many architectures and applied them to iris image segmentation, However, they a...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Precise polyp segmentation is vital for the early diagnosis and prevention of colorectal cancer(CRC)in clinical ***,due to scale variation and blurry polyp boundaries,it is still a challenging task to achieve satisfac...
详细信息
Precise polyp segmentation is vital for the early diagnosis and prevention of colorectal cancer(CRC)in clinical ***,due to scale variation and blurry polyp boundaries,it is still a challenging task to achieve satisfactory segmentation performance with different scales and *** this study,we present a novel edge-aware feature aggregation network(EFA-Net)for polyp segmentation,which can fully make use of cross-level and multi-scale features to enhance the performance of polyp ***,we first present an edge-aware guidance module(EGM)to combine the low-level features with the high-level features to learn an edge-enhanced feature,which is incorporated into each decoder unit using a layer-by-layer ***,a scale-aware convolution module(SCM)is proposed to learn scale-aware features by using dilated convolutions with different ratios,in order to effectively deal with scale ***,a cross-level fusion module(CFM)is proposed to effectively integrate the cross-level features,which can exploit the local and global contextual ***,the outputs of CFMs are adaptively weighted by using the learned edge-aware feature,which are then used to produce multiple side-out segmentation *** results on five widely adopted colonoscopy datasets show that our EFA-Net outperforms state-of-the-art polyp segmentation methods in terms of generalization and *** implementation code and segmentation maps will be publicly at https://***/taozh2017/EFANet.
Temporal knowledge graph(TKG) reasoning, has seen widespread use for modeling real-world events, particularly in extrapolation settings. Nevertheless, most previous studies are embedded models, which require both enti...
详细信息
Temporal knowledge graph(TKG) reasoning, has seen widespread use for modeling real-world events, particularly in extrapolation settings. Nevertheless, most previous studies are embedded models, which require both entity and relation embedding to make predictions, ignoring the semantic correlations among different entities and relations within the same timestamp. This can lead to random and nonsensical predictions when unseen entities or relations occur. Furthermore, many existing models exhibit limitations in handling highly correlated historical facts with extensive temporal depth. They often either overlook such facts or overly accentuate the relationships between recurring past occurrences and their current counterparts. Due to the dynamic nature of TKG, effectively capturing the evolving semantics between different timestamps can be *** address these shortcomings, we propose the recurrent semantic evidenceaware graph neural network(RE-SEGNN), a novel graph neural network that can learn the semantics of entities and relations simultaneously. For the former challenge, our model can predict a possible answer to missing quadruples based on semantics when facing unseen entities or relations. For the latter problem, based on an obvious established force, both the recency and frequency of semantic history tend to confer a higher reference value for the current. We use the Hawkes process to compute the semantic trend, which allows the semantics of recent facts to gain more attention than those of distant facts. Experimental results show that RE-SEGNN outperforms all SOTA models in entity prediction on 6 widely used datasets, and 5 datasets in relation prediction. Furthermore, the case study shows how our model can deal with unseen entities and relations.
Wireless Federated Learning (FL) is a distributed Artificial Intelligence (AI) framework, enabling decision-making at the network edge where data are generated. However, wireless transmissions of model updates from ed...
详细信息
This article introduces a novel methodology based on conditional β-variational autoencoder (cβ-VAE) architecture to generate diverse types of planar four-bar mechanisms for a given coupler curve. Central to our cont...
详细信息
Convolutional neural networks (CNNs), one of the key architectures of deep learning models, have achieved superior performance on many machine learning tasks such as image classification, video recognition, and power ...
详细信息
Mass spectrometry (MS) serves as a powerful analytical technique in metabolomics. Traditional MS analysis workflows are heavily reliant on operator experience and are prone to be influenced by complex, high-dimensiona...
详细信息
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A hi...
详细信息
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A highly sensitive DA electrochemical sensor was constructed by combining molybdenum disulfide quantum dots(MSQDs) with multiwalled carbon nanotubes(MWCNTs).The MSQDs were synthesized using the shear exfoliation *** sensors consist of MSQDs with Mo-S edge catalytic centers for the DA redox reaction,and MWCNTs amplify the sensor *** linearity of the sensor for the detection of DA was tested in the presence of ascorbic acid(AA,50 μmol·L-1) and uric acid(UA,200 μmol·L-1),and exhibited linearity from 2 to 966 μmol·L-1of DA with 0.097 μA(mol·L-1)-1sensitivity and a low limit of detection of0.6 μmol·L-1(the ratio between signal and noise,S/N=3).Moreover,the sensitivity and selectivity of the sensor were also studied using *** is no increase in amperometric current after adding the most potentially interfering *** sensor was successfully applied to recover DA in human blood sera ***,machine learning algorithms were operated to aid in the near-precise detection of DA in the heterogeneous mixture containing AA and *** algorithms facilitate the identification and quantification of DA amidst coexisting interferents,including AA,that are commonly present in biological matrices.
Memristor-based Computation-In-Memory (CIM) has emerged as a compelling paradigm for designing energy-efficient neural network hardware. However, memristors suffer from conductance variation issue, which introduces co...
详细信息
暂无评论