Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context ...
详细信息
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context of IoT fog *** suggested framework,called"BlocFogSec",secures key management and data sharing through blockchain consensus and smart *** existing solutions,BlocFogSec utilizes two types of smart contracts for secure key exchange and data sharing,while employing a consensus protocol to validate transactions and maintain blockchain *** process and store data effectively at the network edge,the framework makes use of fog computing,notably reducing latency and raising *** successfully blocks unauthorized access and data breaches by restricting transactions to authorized *** addition,the framework uses a consensus protocol to validate and add transactions to the blockchain,guaranteeing data accuracy and *** compare BlocFogSec's performance to that of other models,a number of simulations are *** simulation results indicate that BlocFogSec consistently outperforms existing models,such as Security Services for Fog Computing(SSFC)and Blockchain-based Key Management Scheme(BKMS),in terms of throughput(up to 5135 bytes per second),latency(as low as 7 ms),and resource utilization(70%to 92%).The evaluation also takes into account attack defending accuracy(up to 100%),precision(up to 100%),and recall(up to 99.6%),demonstrating BlocFogSec's effectiveness in identifying and preventing potential attacks.
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous vali...
详细信息
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous validation is requisite for its application in real-world tasks. Specific tests may reveal inadequacies in the performance of pre-trained DRL models, while the “black-box” nature of DRL poses a challenge for testing model behavior. We propose a novel performance improvement framework based on probabilistic automata,which aims to proactively identify and correct critical vulnerabilities of DRL systems, so that the performance of DRL models in real tasks can be improved with minimal model ***, a probabilistic automaton is constructed from the historical trajectory of the DRL system by abstracting the state to generate probabilistic decision-making units(PDMUs), and a reverse breadth-first search(BFS) method is used to identify the key PDMU-action pairs that have the greatest impact on adverse outcomes. This process relies only on the state-action sequence and final result of each trajectory. Then, under the key PDMU, we search for the new action that has the greatest impact on favorable results. Finally, the key PDMU, undesirable action and new action are encapsulated as monitors to guide the DRL system to obtain more favorable results through real-time monitoring and correction mechanisms. Evaluations in two standard reinforcement learning environments and three actual job scheduling scenarios confirmed the effectiveness of the method, providing certain guarantees for the deployment of DRL models in real-world applications.
Partial multi-label learning(PML) allows learning from rich-semantic objects with inaccurate annotations, where a set of candidate labels are assigned to each training example but only some of them are valid. Existi...
详细信息
Partial multi-label learning(PML) allows learning from rich-semantic objects with inaccurate annotations, where a set of candidate labels are assigned to each training example but only some of them are valid. Existing approaches rely on disambiguation to tackle the PML problem, which aims to correct noisy candidate labels by recovering the ground-truth labeling information ahead of prediction model induction. However, this dominant strategy might be suboptimal as it usually needs extra assumptions that cannot be fully satisfied in real-world scenarios. Instead of label correction, we investigate another strategy to tackle the PML problem, where the potential ambiguity in PML data is eliminated by correcting instance features in a label-specific manner. Accordingly, a simple yet effective approach named PASE, i.e., partial multi-label learning via label-specific feature corrections, is proposed. Under a meta-learning framework, PASElearns to exert label-specific feature corrections so that potential ambiguity specific to each class label can be eliminated and the desired prediction model can be induced on these corrected instance features with the provided candidate labels. Comprehensive experiments on a wide range of synthetic and real-world data sets validate the effectiveness of the proposed approach.
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
In the fields of intelligent transportation and multi-task cooperation, many practical problems can be modeled by colored traveling salesman problem(CTSP). When solving large-scale CTSP with a scale of more than 1000d...
详细信息
In the fields of intelligent transportation and multi-task cooperation, many practical problems can be modeled by colored traveling salesman problem(CTSP). When solving large-scale CTSP with a scale of more than 1000dimensions, their convergence speed and the quality of their solutions are limited. This paper proposes a new hybrid IT?(HIT?) algorithm, which integrates two new strategies, crossover operator and mutation strategy, into the standard IT?. In the iteration process of HIT?, the feasible solution of CTSP is represented by the double chromosome coding, and the random drift and wave operators are used to explore and develop new unknown regions. In this process, the drift operator is executed by the improved crossover operator, and the wave operator is performed by the optimized mutation strategy. Experiments show that HIT? is superior to the known comparison algorithms in terms of the quality solution.
Offline reinforcement learning(RL) has gathered increasing attention in recent years, which seeks to learn policies from static datasets without active online exploration. However, the existing offline RL approaches o...
详细信息
Offline reinforcement learning(RL) has gathered increasing attention in recent years, which seeks to learn policies from static datasets without active online exploration. However, the existing offline RL approaches often require a large amount of pre-collected data and hence are hardly implemented by a single agent in practice. Inspired by the advancement of federated learning(FL), this paper studies federated offline reinforcement learning(FORL),whereby multiple agents collaboratively carry out offline policy learning with no need to share their raw ***, a straightforward solution is to simply retrofit the off-the-shelf offline RL methods for FL, whereas such an approach easily overfits individual datasets during local updating, leading to instability and subpar performance. To overcome this challenge, we propose a new FORL algorithm, named model-free(MF)-FORL, that exploits novel“proximal local policy evaluation” to judiciously push up action values beyond local data support, enabling agents to capture the individual information without forgetting the aggregated knowledge. Further, we introduce a model-based variant, MB-FORL, capable of improving the generalization ability and computational efficiency via utilizing a learned dynamics model. We evaluate the proposed algorithms on a suite of complex and high-dimensional offline RL benchmarks, and the results demonstrate significant performance gains over the baselines.
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mo...
详细信息
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobileapps. The use of these apps eases our daily lives, and all customers who need any type of service can accessit easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digitalservices to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services,particularly during two large occasions, Umrah and Hajj. However, pilgrims encounter mobile app issues such asslowness, conflict, unreliability, or user-unfriendliness. Pilgrims comment on these issues on mobile app platformsthrough reviews of their experiences with these digital services. Scholars have made several attempts to solve suchmobile issues by reporting bugs or non-functional requirements by utilizing user ***, solving suchissues is a great challenge, and the issues still exist. Therefore, this study aims to propose a hybrid deep learningmodel to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj andUmrah periods from the user perspective. Firstly, a dataset was constructed using user-generated comments fromrelevant mobile apps using natural language processing methods, including information extraction, the annotationprocess, and pre-processing steps, considering a multi-class classification problem. Then, several experimentswere conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-TermMemory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, toexamine the performance of the proposed model. Results show 96% in F1-score and accuracy, and the proposedmodel outperformed the mentioned models.
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions a...
详细信息
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions are firstly detected using visual primitives such as color and shape and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived complexly with bottom-up and top-down strategies combined in human vision. To address this problem, this study proposes a novel end-toend trainable network comprising a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, whereas the two branch nets construct triplet proposals for regional feature mapping and clustering, which drives the network to be bottom-up sensitive to co-salient regions. We construct a new dataset of 2019 natural images with co-saliency in each image to evaluate the proposed method. Experimental results show that the proposed method achieves state-of-the-art accuracy with a running speed of 28 fps.
暂无评论