With the recent advancements of deep learning-based methods in image classification,the requirement of a huge amount of training data is inevitable to avoid overfitting ***,supervised deep learning models require labe...
详细信息
With the recent advancements of deep learning-based methods in image classification,the requirement of a huge amount of training data is inevitable to avoid overfitting ***,supervised deep learning models require labelled datasets for *** such a huge amount of labelled data requires considerable human effort and *** this scenario,self-supervised models are becoming popular because of their ability to learn even from unlabelled ***,the efficient transfer of knowledge learned by self-supervised models into a target task,is an unsolved *** paper proposes a method for the efficient transfer of know-ledge learned by a self-supervised model,into a target *** such as the number of layers,the number of units in each layer,learning rate,and dropout are automatically tuned in these fully connected(FC)layers using a Bayesian optimization technique called the tree-structured parzen estimator(TPE)approach *** evaluate the performance of the proposed method,state-of-the-art self-supervised models such as SimClr and SWAV are used to extract the learned *** are carried out on the CIFAR-10,CIFAR-100,and Tiny ImageNet *** proposed method outperforms the baseline approach with margins of 2.97%,2.45%,and 0.91%for the CIFAR-100,Tiny ImageNet,and CIFAR-10 datasets,respectively.
ChatGPT, an advanced language model powered by artificial intelligence, has emerged as a transformative tool in the field of education. This article explores the potential of ChatGPT in revolutionizing learning and co...
详细信息
The outbreak of COVID-19 (also known as Coronavirus) has put the entire world at risk. The disease first appears in Wuhan, China, and later spread to other countries, taking a form of a pandemic. In this paper, we try...
详细信息
In vehicular ad-hoc networks (VANETs), ensuring passenger safety requires fast and reliable emergency message broadcasts. The current communication standard for messaging in VANETs is IEEE 802.11p. As IEEE 802.11p all...
详细信息
In vehicular ad-hoc networks (VANETs), ensuring passenger safety requires fast and reliable emergency message broadcasts. The current communication standard for messaging in VANETs is IEEE 802.11p. As IEEE 802.11p allows carrier-sense multiple access with collision avoidance (CSMA/CA) in the media access control (MAC) layer. A large contention window ($CW$) value will increase delay, whereas a small $CW$ value will increase the probability of collision. Therefore, adaptive regulation of the $CW$ value is needed to achieve high reliability and low delay in VANETs, in accordance with variations in the environment. However, the traditional MAC protocol cannot achieve the aforementioned requirements. Reinforcement learning (RL) emphasizes the selection of optimal action according to observations of the environment to achieve optimal system performance. In this study, a Q-learning (QL) RL algorithm based on IEEE 802.11p was used to achieve the requirements of adaptive broadcasting. Adaptive broadcasting was achieved based on a reward definition of high reliability and low delay for the QL algorithm. In this approach, the learning state is the $CW$ size, the system sets up a Q-table using RL, and the optimal action is based on the maximum Q-value. The $CW$ size can be provided with adaptive self-regulation by RL, providing high reliability and low delay for the broadcast of emergency messages. We also compared our proposed scheme to other QL-based MAC protocols in VANETs by performing simulations and demonstrated that it can achieve high reliability and low delay for the broadcast of emergency messages. IEEE
In recent times, drastic climate changes have caused a substantial increase in the growth of crop diseases. This causes large-scale demolition of crops, decreases cultivation, and eventually leads to the financial los...
详细信息
In recent years, academics have placed a high value on multi-modal emotion identification, as well as extensive research has been conducted in the areas of video, text, voice, and physical signal emotion detection. Th...
详细信息
In the realm of medical datasets, particularly when considering diabetes, the occurrence of data incompleteness is a prevalent issue. Unveiling valuable patterns through medical data analysis is crucial for early and ...
详细信息
Differential Evolution (DE) is a potent stochastic evolutionary optimization algorithm garnering increasing research attention. Over the years, it has been found applicable in solving diverse real-world problems. DE e...
详细信息
Estimating hand pose is a challenge that has significantly benefited from using deep learning-based algorithms. This study area holds critical significance across various computer vision and robotics domains, includin...
详细信息
As location information of numerous Internet of Thing(IoT)devices can be recognized through IoT sensor technology,the need for technology to efficiently analyze spatial data is *** of the famous algorithms for classif...
详细信息
As location information of numerous Internet of Thing(IoT)devices can be recognized through IoT sensor technology,the need for technology to efficiently analyze spatial data is *** of the famous algorithms for classifying dense data into one cluster is Density-Based Spatial Clustering of Applications with Noise(DBSCAN).Existing DBSCAN research focuses on efficiently finding clusters in numeric data or categorical *** this paper,we propose the novel problem of discovering a set of adjacent clusters among the cluster results derived for each keyword in the keyword-based DBSCAN *** existing DBSCAN algorithm has a problem in that it is necessary to calculate the number of all cases in order to find adjacent clusters among clusters derived as a result of the *** solve this problem,we developed the Genetic algorithm-based Keyword Matching DBSCAN(GKM-DBSCAN)algorithm to which the genetic algorithm was applied to discover the set of adjacent clusters among the cluster results derived for each *** order to improve the performance of GKM-DBSCAN,we improved the general genetic algorithm by performing a genetic operation in *** conducted extensive experiments on both real and synthetic datasets to show the effectiveness of GKM-DBSCAN than the brute-force *** experimental results show that GKM-DBSCAN outperforms the brute-force method by up to 21 ***-DBSCAN with the index number binarization(INB)is 1.8 times faster than GKM-DBSCAN with the cluster number binarization(CNB).
暂无评论