Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing huma...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated ***-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this ***,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising *** our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this *** approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA *** the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition *** rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our *** results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)***,traditional ML and AutoML approac...
详细信息
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)***,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation *** glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of *** approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model *** validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our *** the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for *** second pipeline is dedicated to feature extraction and classification,utilizing deep learning ***,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class *** ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model *** our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.
Long-tailed multi-label text classification aims to identify a subset of relevant labels from a large candidate label set, where the training datasets usually follow long-tailed label distributions. Many of the previo...
详细信息
Long-tailed multi-label text classification aims to identify a subset of relevant labels from a large candidate label set, where the training datasets usually follow long-tailed label distributions. Many of the previous studies have treated head and tail labels equally, resulting in unsatisfactory performance for identifying tail labels. To address this issue, this paper proposes a novel learning method that combines arbitrary models with two steps. The first step is the “diverse ensemble” that encourages diverse predictions among multiple shallow classifiers, particularly on tail labels, and can improve the generalization of tail *** second is the “error correction” that takes advantage of accurate predictions on head labels by the base model and approximates its residual errors for tail labels. Thus, it enables the “diverse ensemble” to focus on optimizing the tail label performance. This overall procedure is called residual diverse ensemble(RDE). RDE is implemented via a single-hidden-layer perceptron and can be used for scaling up to hundreds of thousands of labels. We empirically show that RDE consistently improves many existing models with considerable performance gains on benchmark datasets, especially with respect to the propensity-scored evaluation ***, RDE converges in less than 30 training epochs without increasing the computational overhead.
Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious *** of the main functions of sign language is to communicate with each other ...
详细信息
Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious *** of the main functions of sign language is to communicate with each other through hand *** of hand gestures has become an important challenge for the recognition of sign *** are many existing models that can produce a good accuracy,but if the model test with rotated or translated images,they may face some difficulties to make good performance *** resolve these challenges of hand gesture recognition,we proposed a Rotation,Translation and Scale-invariant sign word recognition system using a convolu-tional neural network(CNN).We have followed three steps in our work:rotated,translated and scaled(RTS)version dataset generation,gesture segmentation,and sign word ***,we have enlarged a benchmark dataset of 20 sign words by making different amounts of Rotation,Translation and Scale of the ori-ginal images to create the RTS version *** we have applied the gesture segmentation *** segmentation consists of three levels,i)Otsu Thresholding with YCbCr,ii)Morphological analysis:dilation through opening morphology and iii)Watershed ***,our designed CNN model has been trained to classify the hand gesture as well as the sign *** model has been evaluated using the twenty sign word dataset,five sign word dataset and the RTS version of these *** achieved 99.30%accuracy from the twenty sign word dataset evaluation,99.10%accuracy from the RTS version of the twenty sign word evolution,100%accuracy from thefive sign word dataset evaluation,and 98.00%accuracy from the RTS versionfive sign word dataset ***,the influence of our model exists in competitive results with state-of-the-art methods in sign word recognition.
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of *** HC might be utilized tow...
详细信息
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of *** HC might be utilized toward determining gestational age and tracking fetal *** automated approach is particularly valuable in low-resource settings where access to trained sonographers is *** CAD system is divided into two steps:to begin,Haar-like characteristics were extracted from ultrasound pictures in order to train a classifier using random forests to find the fetal *** identified the HC using dynamic programming,an elliptical fit,and a Hough *** computer-aided detection(CAD)program was well-trained on 999 pictures(HC18 challenge data source),and then verified on 335 photos from all trimesters in an independent test set.A skilled sonographer and an expert in medicine personally marked the test *** used the crown-rump length(CRL)measurement to calculate the reference gestational age(GA).In the first,second,and third trimesters,the median difference between the standard GA and the GA calculated by the skilled sonographer stayed at 0.7±2.7,0.0±4.5,and 2.0±12.0 days,*** regular duration variance between the baseline GA and the health investigator’s GA remained 1.5±3.0,1.9±5.0,and 4.0±14 a couple of *** mean variance between the standard GA and the CAD system’s GA remained between 0.5 and 5.0,with an additional variation of 2.9 to 12.5 *** outcomes reveal that the computer-aided detection(CAD)program outperforms an expert *** paired with the classifications reported in the literature,the provided system achieves results that are comparable or even *** have assessed and scheduled this computerized approach for HC evaluation,which includes information from all trimesters of gestation.
Computational creativity modeling, including concept combination, enables us to foster deeper abilities of Artificial Intelligence (Al) agents. All hough concept combination lias been addressed in a lot of computation...
详细信息
Large-quantity and high-quality data is critical to the success of machine learning in diverse *** with the dilemma of data silos where data is difficult to circulate,emerging data markets attempt to break the dilemma...
详细信息
Large-quantity and high-quality data is critical to the success of machine learning in diverse *** with the dilemma of data silos where data is difficult to circulate,emerging data markets attempt to break the dilemma by facilitating data exchange on the ***,on the other hand,is one of the important methods to efficiently collect large amounts of data with high-value in data *** this paper,we investigate the joint problem of efficient data acquisition and fair budget distribution across the crowdsourcing and data *** propose a new metric of data value as the uncertainty reduction of a Bayesian machine learning model by integrating the data into model *** by this data value metric,we design a mechanism called Shapley Value Mechanism with Individual Rationality(SV-IR),in which we design a greedy algorithm with a constant approximation ratio to greedily select the most cost-efficient data brokers,and a fair compensation determination rule based on the Shapley value,respecting the individual rationality *** further propose a fair reward distribution method for the data holders with various effort levels under the charge of a data *** demonstrate the fairness of the compensation determination rule and reward distribution rule by evaluating our mechanisms on two real-world *** evaluation results also show that the selection algorithm in SV-IR could approach the optimal solution,and outperforms state-of-the-art methods.
Transition towards carbon-neutral power systems has necessitated optimization of power dispatch in active distribution networks(ADNs)to facilitate integration of distributed renewable *** to unavailability of network ...
详细信息
Transition towards carbon-neutral power systems has necessitated optimization of power dispatch in active distribution networks(ADNs)to facilitate integration of distributed renewable *** to unavailability of network topology and line impedance in many distribution networks,physical model-based methods may not be applicable to their *** tackle this challenge,some studies have proposed constraint learning,which replicates physical models by training a neural network to evaluate feasibility of a decision(i.e.,whether a decision satisfies all critical constraints or not).To ensure accuracy of this trained neural network,training set should contain sufficient feasible and infeasible ***,since ADNs are mostly operated in a normal status,only very few historical samples are ***,the historical dataset is highly imbalanced,which poses a significant obstacle to neural network *** address this issue,we propose an enhanced constraint learning ***,it leverages constraint learning to train a neural network as surrogate of ADN's ***,it introduces Synthetic Minority Oversampling Technique to generate infeasible samples to mitigate imbalance of historical *** incorporating historical and synthetic samples into the training set,we can significantly improve accuracy of neural ***,we establish a trust region to constrain and thereafter enhance reliability of the *** confirm the benefits of the proposed method in achieving desirable optimality and feasibility while maintaining low computational complexity.
We propose a cross-subcarrier precoder design(CSPD) for massive multiple-input multiple-output(MIMO) orthogonal frequency division multiplexing(OFDM) downlink. This work aims to significantly improve the channel estim...
详细信息
We propose a cross-subcarrier precoder design(CSPD) for massive multiple-input multiple-output(MIMO) orthogonal frequency division multiplexing(OFDM) downlink. This work aims to significantly improve the channel estimation and signal detection performance by enhancing the smoothness of the frequency domain effective channel. This is accomplished by designing a few vectors known as the transform domain precoding vectors(TDPVs), which are then transformed into the frequency domain to generate the precoders for a set of subcarriers. To combat the effect of channel aging, the TDPVs are optimized under imperfect channel state information(CSI). The optimal precoder structure is derived by maximizing an upper bound of the ergodic weighted sum-rate(WSR) and utilizing the a posteriori beam-based statistical channel model(BSCM). To avoid the large-dimensional matrix inversion, we propose an algorithm with symplectic optimization. Simulation results indicate that the proposed cross-subcarrier precoder design significantly outperforms conventional methods.
The immense volume of data generated and collected by smart devices has significantly enhanced various aspects of our daily lives. However, safeguarding the sensitive information shared among these devices is crucial....
详细信息
暂无评论