In this study,twelve machine learning(ML)techniques are used to accurately estimate the safety factor of rock slopes(SFRS).The dataset used for developing these models consists of 344 rock slopes from various open-pit...
详细信息
In this study,twelve machine learning(ML)techniques are used to accurately estimate the safety factor of rock slopes(SFRS).The dataset used for developing these models consists of 344 rock slopes from various open-pit mines around Iran,evenly distributed between the training(80%)and testing(20%)*** models are evaluated for accuracy using Janbu's limit equilibrium method(LEM)and commercial tool GeoStudio *** assessment metrics show that the random forest model is the most accurate in estimating the SFRS(MSE=0.0182,R2=0.8319)and shows high agreement with the results from the LEM *** results from the long-short-term memory(LSTM)model are the least accurate(MSE=0.037,R2=0.6618)of all the models ***,only the null space support vector regression(NuSVR)model performs accurately compared to the practice mode by altering the value of one parameter while maintaining the other parameters *** is suggested that this model would be the best one to use to calculate the SFRS.A graphical user interface for the proposed models is developed to further assist in the calculation of the SFRS for engineering *** this study,we attempt to bridge the gap between modern slope stability evaluation techniques and more conventional analysis methods.
Human emotion detection from images poses a significant challenge in social communication research. This paper introduces an artificial intelligence (AI) system designed for emotion detection through facial expression...
详细信息
The evolution of human civilization has been intrinsically linked to advancements in technology, leading to the development of multiple languages as mediums of communication. However, this linguistic diversity poses s...
详细信息
The concept of using blockchain technology for peer-to-peer energy trading (P2PET) in smart grids, particularly employing a double auction-based game theoretic method, is a fascinating application of both blockchain a...
详细信息
This paper proposes an innovative user authentication system tailored for high-value asset transactions, leveraging advancements in brainwave analysis and emotional state detection. Traditional authentication methods ...
详细信息
Being a major contributor to the global mortality, lung cancer, owing to its fatality, calls for early and efficient diagnosis. This requires the employment of efficient computer aided diagnostics for determining the ...
详细信息
Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to *** g...
详细信息
Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to *** growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real *** work proposes an adap-tive learning algorithm-based framework,Twitter Sentiment Drift Analysis-Bidir-ectional Encoder Representations from Transformers(TSDA-BERT),which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the classification model with domain relevant data in real *** framework also works on static data by converting them to data streams using the Kafka *** experiments conducted on real time and simulated tweets of sports,health care andfinancial topics show that the proposed system is able to detect sentiment drifts and maintain the performance of the classification model,with accuracies of 91%,87%and 90%,*** the results have been provided only for a few topics,as a proof of concept,this framework can be applied to detect sentiment drifts and perform sentiment classification on real time data streams of any topic.
Breast cancer is a major health concern for women worldwide, and early detection is vital to improve treatment outcomes. While existing techniques in mammogram classification have demonstrated promising results, their...
详细信息
Breast cancer is a major health concern for women worldwide, and early detection is vital to improve treatment outcomes. While existing techniques in mammogram classification have demonstrated promising results, their limitations become apparent when applied to larger datasets. The decline in performance with increased dataset size highlights the need for further research and advancements in the field to enhance the scalability and generalizability of these techniques. In this study, we propose a framework to classify breast cancer from mammograms using techniques such as mammogram enhancement, discrete cosine transform (DCT) dimensionality reduction, and deep convolutional neural network (DCNN). The first step is to improve the mammogram display to improve the visibility of key features and reduce noise. For this, we use 2-stage Contrast Limited Adaptive Histogram Equalization (CLAHE). DCT is then used to enhance mammograms to reduce residual data. It can provide effective reduction while preserving important diagnostic information. In this way, we reduce the computational complexity and increase the results of subsequent classification algorithms. Finally, DCNN is used on size-reduced DCT coefficients to learn feature discrimination and classification of mammograms. DCNN architectures have been optimized with various techniques to improve their performance, including regularization and hyperparameter tuning. We perform experiments on the DDSM dataset, a large dataset containing approximately 55,000 mammogram images, and demonstrate the effectiveness of the proposed method. We assess the proposed model’s performance by computing the precision, recall, accuracy, F1-Score, and area under the receiver operating characteristic curve (AUC). We achieve Precision and Recall values of 0.929 and 0.963, respectively. The classification accuracy of the proposed models is 0.963. Moreover, the F1-Score and AUC values are 0.962 and 0.987, respectively. These results are better a
In recent years, most of the research on speech enhancement (SE) has applied different strategies to improve performance through deep neural network models. However, as the performance improves, the memory resources a...
详细信息
Neurosymbolic artificial intelligence (AI) is an emerging branch of AI that combines the strengths of symbolic AI and subsymbolic AI. Symbolic AI is based on the idea that intelligence can be represented using semanti...
详细信息
Neurosymbolic artificial intelligence (AI) is an emerging branch of AI that combines the strengths of symbolic AI and subsymbolic AI. Symbolic AI is based on the idea that intelligence can be represented using semantically meaningful symbolic rules and representations, while deep learning (DL), or sometimes called subsymbolic AI, is based on the idea that intelligence emerges from the collective behavior of artificial neurons that are connected to each other. A major drawback of DL is that it acts as a 'black box,' meaning that predictions are difficult to explain, making the testing & evaluation (T&E) and validation & verification (V&V) processes of a system that uses subsymbolic AI a challenge. Since neurosymbolic AI combines the advantages of both symbolic and subsymbolic AI, this survey explores how neurosymbolic applications can ease the V&V process. This survey considers two taxonomies of neurosymbolic AI, evaluates them, and analyzes which algorithms are commonly used as the symbolic and subsymbolic components in current applications. Additionally, an overview of current techniques for the T&E and V&V processes of these components is provided. Furthermore, it is investigated how the symbolic part is used for T&E and V&V purposes in current neurosymbolic applications. Our research shows that neurosymbolic AI has great potential to ease the T&E and V&V processes of subsymbolic AI by leveraging the possibilities of symbolic AI. Additionally, the applicability of current T&E and V&V methods to neurosymbolic AI is assessed, and how different neurosymbolic architectures can impact these methods is explored. It is found that current T&E and V&V techniques are partly sufficient to test, evaluate, verify, or validate the symbolic and subsymbolic part of neurosymbolic applications independently, while some of them use approaches where current T&E and V&V methods are not applicable by default, and adjustments or even new approaches are needed. Our research shows that th
暂无评论