Recognizing a face is an intricate cognitive process that showcases the remarkable capabilities of the human brain in visual perception, a phenomenon deeply rooted in evolutionary biology. In an attempt to emulate thi...
详细信息
The increasing recognition of hydrogen as a critical element in the global net-zero transition and its clear role in decarbonizing challenging sectors coincide with the growing urgency to address climate ***'...
详细信息
The increasing recognition of hydrogen as a critical element in the global net-zero transition and its clear role in decarbonizing challenging sectors coincide with the growing urgency to address climate ***'s favourable renewable-energy capacity,ranging from 28%to 36%for solar,has been reported by the global solar irradiance ***,the majority of hydrogen production today relies on fossil fuels(96%),with only a small fraction(4%)being produced through water *** though there have been many studies on climate change mitigation with a focus on Africa,a green hydrogen production from a photovoltaic power station approach has not been ***,literature with a focus on Nigeria is *** study focuses on the African green hydrogen production industry,utilizing Nigeria as a case study to explore the feasibility of generating clean hydrogen vectors from a percentage of photovoltaic power output in various regions of the country through stand-alone solar grid electrification *** of the usage and effectiveness of the produced hydrogen fuel in each region are carried out,with the highest region having an annual output of 12247278 kg of green hydrogen and 8573094 kg of ammonia and the lowest region having an output of 511245 kg of green hydrogen and 357871 kg of ammonia,and the expected production from the proposed usage of 50%of the power generation output of the installed 1.6-MWp and 80-kWp solar power minigrids in the regions is *** analyses were repeated for the other considered regions in the *** results showcased the enormous advantages of the electrolytic production of hydrogen and how the greener economy project can play a major role in mitigating climate change effects and overreliance on fossil fuels as the driver of the economy in many African countries.
In computer vision applications like surveillance and remote sensing,to mention a few,deep learning has had considerable *** imaging still faces a number of difficulties,including intra-class similarity,a scarcity of ...
详细信息
In computer vision applications like surveillance and remote sensing,to mention a few,deep learning has had considerable *** imaging still faces a number of difficulties,including intra-class similarity,a scarcity of training data,and poor contrast skin lesions,notably in the case of skin *** optimisation-aided deep learningbased system is proposed for accurate multi-class skin lesion *** sequential procedures of the proposed system start with preprocessing and end with *** preprocessing step is where a hybrid contrast enhancement technique is initially proposed for lesion identification with healthy *** of flipping and rotating data,the outputs from the middle phases of the hybrid enhanced technique are employed for data augmentation in the next ***,two pre-trained deep learning models,MobileNetV2 and NasNet Mobile,are trained using deep transfer learning on the upgraded enriched ***,a dual-threshold serial approach is employed to obtain and combine the features of both *** next step was the variance-controlled Marine Predator methodology,which the authors proposed as a superior optimisation *** top features from the fused feature vector are classified using machine learning *** experimental strategy provided enhanced accuracy of 94.4%using the publicly available dataset ***,the proposed framework is evaluated compared to current approaches,with remarkable results.
To address the challenges associated with the abundance of features in software datasets, this study proposes a novel hybrid feature selection method that combines quantum particle swarm optimization (QPSO) and princi...
详细信息
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system co...
详细信息
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system constraints in such scenarios, model predictive control(MPC) has demonstrated exceptional performance in complex multi-robot manipulation tasks involving multi-objective optimization with system constraints. However, in such scenarios, the substantial computational load required to solve the optimal control problem(OCP) at each triggering instant can lead to significant delays between state sampling and control application, hindering real-time performance. To address these challenges, this paper introduces a novel robust tube-based smooth MPC approach for two fundamental manipulation tasks: reaching a given target and tracking a reference trajectory. By predicting the successor state as the initial condition for imminent OCP solving, we can solve the forthcoming OCP ahead of time, alleviating delay effects. Additionally,we establish an upper bound for linearizing the original nonlinear system, reducing OCP complexity and enhancing response speed. Grounded in tube-based MPC theory, the recursive feasibility and closed-loop stability amidst constraints and disturbances are ensured. Empirical validation is provided through two numerical simulations and two real-world dexterous robot manipulation tasks, which shows that the seamless control input by our methods can effectively enhance the solving efficiency and control performance when compared to conventional time-triggered MPC strategies.
The Internet of Things (IoT) is a constantly expanding system connecting countless devices for seamless data collection and exchange. This has transformed decision-making with data-driven insights across different dom...
详细信息
Privacy-preserving online disease prediction and diagnosis are critical issues in the emerging edge-cloud-based healthcare *** patient data pro-cessing from remote places may lead to severe privacy ***,the existing cl...
详细信息
Privacy-preserving online disease prediction and diagnosis are critical issues in the emerging edge-cloud-based healthcare *** patient data pro-cessing from remote places may lead to severe privacy ***,the existing cloud-based healthcare system takes more latency and energy consumption during diagnosis due to offloading of live patient data to remote cloud *** the privacy *** proposed research introduces the edge-cloud enabled privacy-preserving healthcare system by exploiting additive homomorphic encryption *** can help maintain the privacy preservation and confidentiality of patients’medical data during diagnosis of Parkinson’s *** addition,the energy and delay aware computational offloading scheme is proposed to minimize the uncertainty and energy consumption of end-user *** proposed research maintains the better privacy and robustness of live video data processing during prediction and diagnosis compared to existing health-care systems.
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boo...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh env...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh environment leads to significant variations in the shape and size of the defects. To address this challenge, we propose the multivariate time series segmentation network(MSSN), which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates. To tackle the classification difficulty caused by structural signal variance, MSSN employs logarithmic normalization to adjust instance distributions. Furthermore, it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences. Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95% localization and demonstrates the capture capability on the synthetic dataset. In a nuclear plant's heat transfer tube dataset, it captures 90% of defect instances with75% middle localization F1 score.
作者:
Zjavka, LadislavDepartment of Computer Science
Faculty of Electrical Engineering and Computer Science VŠB-Technical University of Ostrava 17. Listopadu 15/2172 Ostrava Czech Republic
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV for...
详细信息
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV forecasting is unavoidable in supply and load planning necessary in integration of smart systems into electrical grids. Intra- or day-ahead modelling of weather patterns based on Artificial Intelligence (AI) allows one to refine available 24 h. cloudiness forecast or predict PV production at a particular plant location during the day. AI usually gets an adequate prediction quality in shorter-level horizons, using the historical meteo- and PV record series as compared to Numerical Weather Prediction (NWP) systems. NWP models are produced every 6 h to simulate grid motion of local cloudiness, which is additionally delayed and usually scaled in a rough less operational applicability. Differential Neural Network (DNN) is based on a newly developed neurocomputing strategy that allows the representation of complex weather patterns analogous to NWP. DNN parses the n-variable linear Partial Differential Equation (PDE), which describes the ground-level patterns, into sub-PDE modules of a determined order at each node. Their derivatives are substituted by the Laplace transforms and solved using adapted inverse operations of Operation Calculus (OC). DNN fuses OC mathematics with neural computing in evolution 2-input node structures to form sum modules of selected PDEs added step-by-step to the expanded composite model. The AI multi- 1…9-h and one-stage 24-h models were evolved using spatio-temporal data in the preidentified daily learning sequences according to the applied input–output data delay to predict the Clear Sky Index (CSI). The prediction results of both statistical schemes were evaluated to assess the performance of the AI models. Intraday models obtain slightly better prediction accuracy in average errors compared to those applied in the second-day-ahead
暂无评论