作者:
Iskander, M.F.CAEME Director
Electrical Engineering Department University of Utah Salt Lake City Utah 84112 Dr. Iskander edited two special issues of theJournal of Microwave Power
one on “Electromagnetics and Energy Applications” March 1983 and the other on “Electromagnetic Techniques in Medical Diagnosis and Imaging” September 1983. He authored one book onElectromagnetic Fields and Waves published by Prentice Hall in 1992 he edited theCAEME Software Book
Vol. I 1991 and he coedited a third book onMicrowave Processing of Materials
published by the Materials Research Society in 1991. The holder of seven patents he has contributed 16 chapters to eight research books published more than 90 papers in technical journals and made numerous presentations in technical conferences. In 1983 he received the College of Engineering Outstanding Teaching Award and the College Patent Award for creative innovative and practical invention. In 1984 he was selected by the Utah Section of the IEEE as Engineer of the Year. In 1984 he received the Outstanding Paper Award from the International Microwave Power Institute and in 1985 he received the Curtis W. McGraw ASEE National Research Award for outstanding early achievements by a university faculty member. In 1991 he received the ASEE George Westinghouse National Award for innovation in engineering education. In 1986 Dr. Iskander established the Engineering Clinic Program in the College of Engineering at the University of Utah. Since then the program has attracted more than 45 research projects from 18 companies throughout the United States. He is also the director of the NSF/IEEE Center for Computer Applications in Electromagnetics Education (CAEME). He co-organized symposia on “Microwave Processing of Materials” held in conjunction with Materials Research Society meetings in the Springs of 1990 and 1992 in San Francisco. He also organized several workshops and special sessions in conjunction with IEEE symposia. Dr. Iskander is the editor of the journalComputer Applications i
The National Science Foundation/Institute of Electrical and Electronic Engineers (NSF/IEEE) Center for computer Applications in Electromagnetic (EM) Education (CAEME) was funded in early 1990 by the National Science F...
The National Science Foundation/Institute of Electrical and Electronic Engineers (NSF/IEEE) Center for computer Applications in Electromagnetic (EM) Education (CAEME) was funded in early 1990 by the National Science Foundation to stimulate and accelerate the use of computers and software tools in EM education. The Center is managed by the Executive Office of IEEE on behalf of the Antennas and Propagation Society. This organizational structure provided avenues for broad participation by universities, professional societies, and corporations in the Center's activities. In two years of operation, CAEME has organized several workshops and special sessions in international meetings, published its first software book, prepared a lesson on “Electromagnetic Waves” using interactive video, and raised over $ 130,000 from university membership, participating societies, and corporate sponsors. This article summarizes CAEME activities, outlines its organizational structure, and briefly describes the contents of its first software book. Future developments are discussed and avenues for participation are outlined.
作者:
LINDGREN, JRSOLITARIO, WAMOORE, APSTREIFF, MAJohn R. Lindgren
Jr:. is vice president for engineering at Ingalls Shipbuilding Inc. a Division of Litton Industries in Pascagoula Miss. He joined Ingalls in 1958 and has held various positions in the Engineering Division and participated in the design of numerous merchant ships drill rigs submarines and surface combatants and auxiliary support ships. Mr. Lindgren is a 1958 graduate of the University of Southwest Louisiana. His degree is in mechanical engineering and he is also a licensed professional engineer. William A. Solitario:is the director of advanced technology at Ingalls Shipbuilding
Inc. in Pascagoula Miss. He received his B.S. degree in chemical engineering from the City University of New York and has 28 years experience in marine engineering and design. His current responsibilities include the direction of Ingalls' IRAD programs and several Navy-funded R&D programs to improve ship's performance and reduce ship's operating costs. He is a member of the Society of Naval Architects and Marine Engineers and past chairman of the Gulf Section East Area. Arnold P. Moore:is the director
design engineering at Ingalls Shipbuilding where he is responsible for all new construction design and engineering activities. Prior to promotion to his current position Mr. Moore served as chief naval architect at Ingalls. He has 24 years experience in ship design construction and repair. Mr. Moore holds the professional degree of ocean engineer as well as a master's degree in naval architecture and marine engineering from MIT. He also earned a bachelor's degree in naval science from the U.S. Naval Academy and is a registered professional engineer. Mr. Moore served as an engineering duty officer in the U.S. Navy and is currently a captain in the Naval Reserve. He is a past chairman of the Gulf Section of the Society of Naval Architects and Marine Engineers and a member of the American Society of Naval Engineers and Sigma Xi. Michel A. Streiff:is the manager of CAD/CAM applications at Ingalls Shipbuilding
Inc. His
The SA'AR-5 Corvette program is the first major warship construction to be entirely accomplished using a 3-dimensional, interference checked computer based design. This paper discusses the organization and approac...
详细信息
The SA'AR-5 Corvette program is the first major warship construction to be entirely accomplished using a 3-dimensional, interference checked computer based design. This paper discusses the organization and approach used to create the design models which form the basis for interference checking as well as the source of extracted production data. The design or product model is the nucleus of the computer data base that defines the configuration of the entire ship. The data base includes geometry, weight, and material, as well as production control data. The ability of the computer to link such diverse information is the key to maintaining configuration control during the course of the design and construction. The ease with which formatted manufacturing data (both N.C. fabrication and installation) can be extracted enables the preparation of detailed packages containing the desired geometry as well as the associated material and sequencing data, thus assuring the producibility of the design. The SA'AR-5 design is CAD/CAM's state of the art in U.S. shipbuilding.
作者:
SKOLNICK, DHSKOLNICK, ADavid H. Skolnickhas practiced naval engineering in both government and industry. He has supported the Military Sealift Command and the Naval Sea Systems Command Ship Design Group and Amphibious Ship Acquisition Program Office
participating in the design and assessment of ship structure evaluation of intact and damaged stability and arrangements during design and construction phases of acquisition conversion and overhaul. He is currently involved in systems engineering and integration. Recent responsibilities have included requirements analyses and feasibility studies interface analyses and computer aided analyses. He received his B.S. in naval architecture and marine engineering from Webb Institute of Naval Architecture in 1982 (as an ASNE scholar) and is currently an M.S. candidate in systems engineering at the University of Virginia. Alfred Skolnickserved over 30 years as an engineering duty officer and retired from the Navy with the rank of captain in 1983. His early assignments included tactical missile engineering
shipboard duty and Polaris submarine inertial navigation. He later served in the Deep Submergence Systems Project was project director
surface effect ships (SES) David Taylor Model Basin director of technology
Joint Navy-Commerce SES Program director
combat systems Naval Sea Systems Command and project manager directed energy weapons. His awards include the Navy League's Parsons Award in 1979 for scientific and technical progress ASNE's Gold Medal in 1981 for high energy laser development the Navy Legion of Merit in 1983 National Capital Engineer of the Year in 1986 and the American Defense Preparedness Association Gold Medal in 1988 for contributions to strategic defense. He was president of ASNE from 1985–1989. He received his B.S. in mathematics from Queens College his M.A. in mathematics from Columbia University his M.S. in electrical engineering from U.S. Naval Postgraduate School and his Ph.D. in electrical engineering/applied mathematics from Polytechnic University. He w
Changing threat requirements and radical budget shifts imply that Navy operational needs will broaden and engineering solutions will face tougher constraints. Existing and emerging technology promise increased combat ...
详细信息
Changing threat requirements and radical budget shifts imply that Navy operational needs will broaden and engineering solutions will face tougher constraints. Existing and emerging technology promise increased combat capability in smaller packages;space-based assets will allow operator orchestration of widely dispersed naval units via connectivity attributes previously unavailable. Tactical data relay by downlink may permit reallocation of responsibilities among several platforms, space, air, or seaborne, so ships can be outfitted for custom-use (sensing, unique data processing, high-firepower) and optimized to meet specific mission needs. These evolving capabilities demand a fresh look at ship concepts and prospective force structures consistent with global and fiscal realities. Warfighting performance formerly unknown in small ship design may offer a very effective solution to the intricate, interacting issues of falling defense budgets, diverse operational requirements and complex national priorities. Multimission ships which take advantage of new or current technology to reduce ship size, manning and cost could be affordable in sufficient numbers to meet our continuing worldwide obligations, complement our larger ships' force structure, and produce a balanced fleet. These same ships could satisfy U.S. maritime needs beyond the Navy and improve export trade through foreign military sales (FMS).
作者:
KING, JFBARTON, DEJ. Fred King:is the manager of the Advanced Technology Department for Unisys in Reston
Virginia. He earned his Ph.D. in mathematics from the University of Houston in 1977. He has been principal investigator of research projects in knowledge engineering pattern recognition and heuristic problem-solving. Efforts include the development of a multi-temporal multispectral classifier for identifying graincrops using LANDSAT satellite imagery data for NASA. Also as a member of the research team for a NCI study with Baylor College of Medicine and NASA he helped develop techniques for detection of carcinoma using multispectral microphotometer scans of lung tissue. He established and became technical director of the AI Laboratory for Ford Aerospace where he developed expert scheduling modeling and knowledge acquisition systems for NASA. Since joining Unisys in 1985 he has led the development of object-oriented programming environments blackboard architectures data fusion techniques using neural networks and intelligent data base systems. Douglas E. Barton:is manager of Logistics Information Systems for Unisys in Reston
Virginia. He earned his B.A. degree in computer science from the College of William and Mary in 1978 and did postgraduate work in London as a Drapers Company scholar. Since joining Unisys in 1981 his work has concentrated on program management and software engineering of large scale data base management systems and design and implementation of knowledge-based systems in planning and logistics. As chairman of the Logistics Data Subcommittee of the National Security Industrial Association (NSIA) he led an industry initiative which examined concepts in knowledge-based systems in military logistics. His responsibilities also include evaluation development and tailoring of software engineering standards and procedures for data base and knowledge-based systems. He is currently program manager of the Navigation Information Management System which provides support to the Fleet Ballistic Missile Progr
A valuable technique during concept development is rapid prototyping of software for key design components. This approach is particularly useful when the optimum design approach is not readily apparent or several know...
详细信息
A valuable technique during concept development is rapid prototyping of software for key design components. This approach is particularly useful when the optimum design approach is not readily apparent or several known alternatives need to be rapidly evaluated. A problem inherent in rapid prototyping is the lack of a "target system" with which to interface. Some alternatives are to develop test driver libraries, integrate the prototype with an existing working simulator, or build one for the specific problem. This paper presents a unique approach to concept development using rapid prototyping for concept development and scenario-based simulation for concept verification. The rapid prototyping environment, derived from artificial intelligence technology, is based on a blackboard architecture. The rapid prototype simulation capability is provided through an object-oriented modeling environment. It is shown how both simulation and blackboard technologies are used collectively to rapidly gain insight into a tenacious problem. A specific example will be discussed where this approach was used to evolve the logic of a mission controller for an autonomous underwater vehicle.
作者:
Krinsky, Joel L.Noel, WilliamJoel L. Krinskyholds a B.S. degree from the U.S. Merchant Marine Academy (1960) and an M.B.A. from the American University (1966). He is currently the director of The HVAC
Submarine Life Support Division within NavSea. He formerly served as the deputy director of the Auxiliaries Division and head of the Air Compressor/Forced Draft Blowers and Valves and Piping Branches within the Auxiliaries Division. He has thirty years experience in the marine engineering and computer fields. He sailed for two years in the merchant marine and then began his career in the Bureau of Ships in 1962 as a project engineer in the Boiler and Heat Exchanger Branch. Mr. Krinsky then served as the systems acquisition manager for navigation systems on attack submarines and aircraft carriers. Mr. Krinsky entered private industry with IBM in 1967 spent eight years in the computer industry serving in various capacities and returned to NavSea in 1975. He served in the U.S. Navy Reserve from 1961 to 1967 and is a member of ASE ASNE and ASTM. Mr. Krinsky currently chairs the ASTM subcommittee for shipboard HVAC (F25.11.07) and is writing the heating ventilation air conditioning and refrigeration chapter of the revised SNAME text on Marine Engineering. William Noelgraduated from Drexel University in 1984 with a B.S. degree in mechanical engineering. He worked at the Naval Ship Systems Engineering Station in Philadelphia in the Air Compressor Branch
where he directed improvements to compressed air ship silencing systems. In 1985 he was hired at the Naval Sea Systems Command and spent two years working in the Auxiliary Machinery Division where he was life cycle manager for various air compressors and compressed air system components. In 1989 he earned an M.S. degree in mechanical engineering from the University of Maryland specializing in multi-phase fluid flow and heat transfer phenomena. Since 1987 Mr. Noel has been the project engineer charged with developing replacement refrigerants and fire fighting agents in executing the Navy CFC/
The Naval Sea Systems Command is executing a three-phase program to ensure compliance with national regulations, DoD policy, and Navy instructions mandating the phase-out of CFC and Halon use by the Navy. The Navy use...
详细信息
The Naval Sea Systems Command is executing a three-phase program to ensure compliance with national regulations, DoD policy, and Navy instructions mandating the phase-out of CFC and Halon use by the Navy. The Navy uses significant quantities of CFCs and Halon as solvents, refrigerants, and fire-fighting agents both in military operations and through specifications and contracts for weapons and support equipment. Phase one of the program plan will be to conserve chemicals through reclaiming and recycling, and by establishing and maintaining a chemical inventory of CFCs and Halons. Phase two will research, develop, and test substitute chemicals and alternative technologies for existing CFC uses. This research will be pursued through Navy and government laboratories, cooperation with chemical and equipment manufacturers, and by participation in government/industry consortiums. Finally, phase three will deploy the replacement chemicals and new technologies into the fleet, and institutionalize the conservation measures developed in phase one. This paper discusses in detail the three phases of the Navy program, and relates the Navy effort to DoD policy, the Montreal Protocol, and Congressional legislation. Unique Navy concerns, research initiatives, and vintaging scenarios for existing equipment are presented.
作者:
SWALLOM, DWSADOVNIK, IGIBBS, JSGUROL, HNGUYEN, LVVANDENBERGH, HHDaniel W. Swallomis the director of military power systems at Avco Research Laboratory
Inc. a subsidiary of Textron Inc. in Everett Mass. Dr. Swallom received his B.S. M.S. and Ph.D. degrees in mechanical engineering from the University of Iowa Iowa City Iowa in 1969 1970 and 1972 respectively. He has authored numerous papers in the areas of power propulsion and plasma physics and currently is a member of the Aerospace Power Systems Technical Committee of the AIAA. Dr. Swallom has directed various programs for the development of advanced power generation systems lightweight power conditioning systems and advanced propulsion systems for marine applications. His previous experience includes work with Odin International Corporation Maxwell Laboratories Inc. Argonne National Laboratory and the Air Force Aero Propulsion Laboratory. Currently Dr. Swallom is directing the technical efforts to apply magnetohydrodynamic principles to a variety of propulsion and power applications for various marine vehicles and power system requirements respectively. Isaac Sadovnikis a principal research engineer in the Energy Technology Office at Avco Research Laboratory
Inc. a subsidiary of Textron Inc. He received his B.S. in engineering (1974) B.S. in physics (1975) M.S. in aeronautics and astronautics (1976) and Ph.D. in physics of fluids (1981) at the Massachusetts Institute of Technology. Dr. Sadovnik has been involved in research work funded by DARPA concerning the use of magnetohydrodynamics for underwater propulsion. He has built theoretical models that predict the hydrodynamic behavior of seawater flow through magnetohydrodynamic ducts and their interaction with the rest of the vehicle (thrust and drag produced). In addition Dr. Sadovnik has been involved in research investigations geared toward the NASP program concerning the use of magnetohydrodynamic combustion-driven accelerator channels. Prior to joining Avco Dr. Sadovnik was a research assistant at MIT where he conducted experimental and
Magnetohydrodynamic propulsion systems for submarines offer several significant advantages over conventional propeller propulsion systems. These advantages include the potential for greater stealth characteristics, in...
详细信息
Magnetohydrodynamic propulsion systems for submarines offer several significant advantages over conventional propeller propulsion systems. These advantages include the potential for greater stealth characteristics, increased maneuverability, enhanced survivability, elimination of cavitation limits, greater payload capability, and the addition of a significant emergency propulsion system. These advantages can be obtained with a magnetohydrodynamic propulsion system that is neutrally bouyant and can operate with the existing submarine propulsion system power plant. A thorough investigation of magnetohydrodynamic propulsion systems for submarine applications has been completed. During the investigation, a number of geometric configurations were examined. Each of these configurations and mounting concepts was optimized for maximum performance for a generic attack class submarine. The optimization considered each thruster individually by determining the optimum operating characteristics for each one and accepting only those thrusters that result in a neutrally buoyant propulsion system. The results of this detailed optimization study show that the segmented, annular thruster is the concept with the highest performance levels and greatest efficiency and offers the greatest potential for a practical magnetohydrodynamic propulsion system for attack class submarines. The optimization study results were used to develop a specific point design for a segmented, annular magnetohydrodynamic thruster for an attack class submarine. The design point case has shown that this thruster may be able to provide the necessary thrust to propel an attack class submarine at the required velocity with the potential for a substantial acoustic signature reduction within the constraints of the existing submarine power plant and the maintenance of neutral buoyancy. This innovative magnetohydrodynamic propulsion system offers an approach for submarine propulsion that can be an important contributio
In the face of present and foreseeable budget constraints which will severely restrict the amount of funding available to provide logistics support to the Navy's operating forces, the Naval Supply Systems Command&...
详细信息
In the face of present and foreseeable budget constraints which will severely restrict the amount of funding available to provide logistics support to the Navy's operating forces, the Naval Supply Systems Command's Advanced Logistics Technology Division is actively pursuing a number of efforts to apply current and emerging technology to improve logistics systems and methodologies. The engineering Data Management Information and Control System (EDMICS) program will automate the technical information process from initial acquisition through delivery to the end user, addressing the inability of current paper-based systems to cope with the tidal wave of information requirements for the effective management of weapon and logistics systems. Rapid Acquisition of Manufactured Parts (RAMP) program is applying computer integrated manufacturing (CIM) technology to the production of spare parts which are normally available only at great cost and with extensive lead time. The Standard Hardware Acquisition and Reliability program (SHARP) will standardize electronic system hardware (i.e., modules, power supplies, enclosures and batteries) to decrease development and logistics costs, while providing dramatic increases in component and system reliability. The Integrated Diagnostic Support System (IDSS) project is integrating diagnostic design into the weapon system development process to enhance the ability of the organizational level technician to detect and isolate system/equipment failures. This paper discusses each of these ongoing projects as well as a number of new initiatives being explored for future funding.
A ship design methodology is presented for developing hull forms that attain improved performance in both seakeeping and resistance. Contrary to traditional practice, the methodology starts with developing a seakeepin...
A ship design methodology is presented for developing hull forms that attain improved performance in both seakeeping and resistance. Contrary to traditional practice, the methodology starts with developing a seakeeping-optimized hull form without making concessions to other performance considerations, such as resistance. The seakeeping-optimized hull is then modified to improve other performance characteristics without degrading the seakeeping. Presented is a point-design example produced by this methodology. Merits of the methodology and the point design are assessed on the basis of theoretical calculations and model experiments. This methodology is an integral part of the Hull Form Design System (HFDS) being developed for computer-supported naval ship design. The modularized character of HFDS and its application to hull form development are discussed.
To meet energy conservation goals of the U.S. Navy, its attention has been focused on ways to reduce individual ship total resistance and powering requirements. One possible method of improving ship powering character...
详细信息
To meet energy conservation goals of the U.S. Navy, its attention has been focused on ways to reduce individual ship total resistance and powering requirements. One possible method of improving ship powering characteristics is by modifying existing individual ship hulls with the addition of bulbous bows. This paper will identify the merits of retrofitting bow bulbs on selected U.S. Navy auxiliary and amphibious warfare ships. A procedure for performing a cost-benefit analysis will be shown for candidate ship classes. An example of this technique for an amphibious warfare ship will also be provided. A brief discussion of future methods to be used for bulbous bow design such as application of systematic model test data and numerical hydrodynamic techniques will be given.
作者:
CAPT. JAMES KEHOE JR.KENNETH S. BROWEREDWARD N. COMSTOCKUSN (RET.)Captain James W. Kehoe
Jr. USN (Ret:.) is well known for his work in conducting comparative naval architecture studies of U.S. and foreign warships design practices for which he received the ASNE Gold Medal for 1981 and the Legion of Merit. He is currently a partner in Spectrum Associates Incorporated Arlington Virginia where he engaged in the feasibility and concept design of naval ships and in continuing his comparative engineering analyses of U.S. and foreign warships. Prior to his retirement from the U.S. Navy in 1982 his naval career involved sea duty aboard three destroyers and three aircraft carriers including command of the USSJohn R. Pierce(DD-753) and engineer officer of the USSWasp(CVS-18). Ashore he had duty at the Naval Sea Systems Command where he directed the Comparative Naval Architecture Program as an instructor in project managementin the Polaris missile projectand as a nuclear weapons officer. A frequent contributor to theNaval Engineers Journal
U.S. Naval Institute Proceedings and theInternational Defense Review he has published a number of articles on U.S. Soviet and other foreign design practices and the effects of design practices on ship size and cost. He has been a member of ASNE since 1974. Kenneth S. Brower:is a partner in Spectrum Associates Incorporated
Arlington Virginia which he founded in June 1978. He graduated from the University of Michigan in 1965 with a Bachelor's Degree in Naval Architecture. Mr. Brower has contributed to the design and construction of numerous merchant ships and warships the latter of which include the CG-47 Project Arapaho (in both cases as feasibility design manager) the FDL and DX projects and the new NATO Frigate Replacement for the 90s DDGX and FFX projects. He conceived and directed the development of several frigates and corvettes for foreign military sales. Mr. Brower directed the development of unique reverse engineering ship design computer models and the development of Spectrum Associates' own keel-up Ship Desi
暂无评论