Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Deep learning architectures have exhibited robust performance in short-term load forecasting tasks, contingent upon access to substantial training datasets. However, the acquisition of such datasets presents significa...
详细信息
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limi...
详细信息
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limited maneuvering space, these carefully positioned cameras often struggle to provide effective visual observations during manipulation. Taking inspiration from human capabilities, we introduce a novel RL-based dual-arm active visual-guided manipulation model(DAVMM), which simultaneously infers “eye” actions and “hand” actions for two separate robotic arms(referred to as the vision-arm and the worker-arm) based on current observations, empowering the robot with the ability to actively perceive and interact with its environment. To handle the extensive redundant observation-action space, we propose a decouplable target-centric reward paradigm to offer stable guidance for the training process. For making fine-grained manipulation action decisions, alongside a global scene image encoder, we utilize an independent encoder to extract local target texture features,enabling the simultaneous acquisition of both global and detailed local information. Additionally, we employ residual-RL and curriculum learning techniques to further enhance our model's sample efficiency and training stability. We conducted comparative experiments and analyses of DAVMM against a set of strong baselines on three occluded and narrow-space manipulation tasks. DAVMM notably improves the success rates across all manipulation tasks and showcases rapid learning capabilities.
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
Mashup developers often need to find open application programming interfaces(APIs) for their composition application development. Although most enterprises and service organizations have encapsulated their businesses ...
详细信息
Mashup developers often need to find open application programming interfaces(APIs) for their composition application development. Although most enterprises and service organizations have encapsulated their businesses or resources online as open APIs, finding the right high-quality open APIs is not an easy task from a library with several open APIs. To solve this problem, this paper proposes a deep learning-based open API recommendation(DLOAR) approach. First, the hierarchical density-based spatial clustering of applications with a noise topic model is constructed to build topic models for Mashup clusters. Second,developers' requirement keywords are extracted by the Text Rank algorithm, and the language model is built. Third, a neural network-based three-level similarity calculation is performed to find the most relevant open APIs. Finally, we complement the relevant information of open APIs in the recommended list to help developers make better choices. We evaluate the DLOAR approach on a real dataset and compare it with commonly used open API recommendation approaches: term frequency-inverse document frequency, latent dirichlet allocation, Word2Vec, and Sentence-BERT. The results show that the DLOAR approach has better performance than the other approaches in terms of precision, recall, F1-measure, mean average precision,and mean reciprocal rank.
Predicting the metastatic direction of primary breast cancer (BC), thus assisting physicians in precise treatment, strict follow-up, and effectively improving the prognosis. The clinical data of 293,946 patients with ...
详细信息
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an inte...
详细信息
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)*** this scheme,the preamble arrangement is combined with the access *** preamble arrangement is realized by preamble slices which is from the virtual preamble *** access devices learn to queue orderly by deep reinforcement *** orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access *** orderly queue is determined by interaction information among multiple *** the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of ***,the access performance of PSOQA is compared with other random contention schemes in different load *** results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.
Knowledge graph (KG) is important in recommendation algorithms. For the past few years, graph neural networks (GNNs) models applied to knowledge-aware recommendation (KGR) have been a current research hotspot. However...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consistin...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consisting of multiple,simple metarelations must be driven by domain *** sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this ***,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given ***,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node ***,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link ***,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the *** experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model.
暂无评论