咨询与建议

限定检索结果

文献类型

  • 432 篇 期刊文献
  • 182 篇 会议
  • 1 册 图书

馆藏范围

  • 615 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 385 篇 理学
    • 268 篇 物理学
    • 80 篇 数学
    • 40 篇 生物学
    • 39 篇 化学
    • 28 篇 统计学(可授理学、...
  • 355 篇 工学
    • 154 篇 计算机科学与技术...
    • 122 篇 软件工程
    • 95 篇 核科学与技术
    • 41 篇 信息与通信工程
    • 37 篇 电气工程
    • 37 篇 生物工程
    • 35 篇 控制科学与工程
    • 33 篇 生物医学工程(可授...
    • 31 篇 电子科学与技术(可...
    • 27 篇 化学工程与技术
    • 25 篇 动力工程及工程热...
    • 23 篇 光学工程
    • 17 篇 材料科学与工程(可...
    • 14 篇 机械工程
    • 14 篇 土木工程
    • 12 篇 仪器科学与技术
  • 83 篇 管理学
    • 60 篇 管理科学与工程(可...
    • 32 篇 工商管理
    • 20 篇 图书情报与档案管...
  • 34 篇 医学
    • 30 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 15 篇 公共卫生与预防医...
    • 14 篇 药学(可授医学、理...
  • 11 篇 教育学
    • 10 篇 教育学
  • 10 篇 经济学
    • 10 篇 应用经济学
  • 10 篇 法学
  • 7 篇 农学
  • 2 篇 军事学

主题

  • 84 篇 hadron colliders
  • 27 篇 hadrons
  • 23 篇 w & z bosons
  • 22 篇 hadron-hadron sc...
  • 20 篇 higgs bosons
  • 13 篇 top quark
  • 12 篇 bottom quark
  • 11 篇 branching fracti...
  • 10 篇 big data
  • 10 篇 relativistic hea...
  • 10 篇 particle decays
  • 10 篇 feature extracti...
  • 9 篇 internet of thin...
  • 9 篇 deep learning
  • 9 篇 hypothetical par...
  • 8 篇 supersymmetric m...
  • 8 篇 bottom baryons
  • 8 篇 supersymmetry
  • 8 篇 machine learning
  • 8 篇 beyond standard ...

机构

  • 164 篇 department of ph...
  • 133 篇 infn sezione di ...
  • 126 篇 national researc...
  • 116 篇 infn sezione di ...
  • 115 篇 infn sezione di ...
  • 106 篇 infn sezione di ...
  • 105 篇 cavendish labora...
  • 99 篇 iccub universita...
  • 98 篇 irfu cea univers...
  • 93 篇 oliver lodge lab...
  • 86 篇 universiteit maa...
  • 86 篇 infn sezione di ...
  • 86 篇 horia hulubei na...
  • 86 篇 university of ch...
  • 86 篇 infn sezione di ...
  • 84 篇 h.h. wills physi...
  • 84 篇 infn sezione di ...
  • 80 篇 yandex school of...
  • 79 篇 massachusetts in...
  • 79 篇 school of physic...

作者

  • 67 篇 m. lu
  • 65 篇 beiter a.
  • 65 篇 arzymatov k.
  • 65 篇 s. keshri
  • 63 篇 g. tonelli
  • 63 篇 d. barney
  • 63 篇 l. valencia palo...
  • 63 篇 t. liu
  • 63 篇 c. hensel
  • 61 篇 w. busza
  • 60 篇 j. lim
  • 60 篇 a. babaev
  • 60 篇 a. garcia-bellid...
  • 60 篇 a. steen
  • 59 篇 s. carrillo more...
  • 59 篇 p. eerola
  • 59 篇 n. cartiglia
  • 59 篇 v. karjavine
  • 59 篇 n. colino
  • 59 篇 f. moortgat

语言

  • 586 篇 英文
  • 24 篇 其他
  • 4 篇 中文
检索条件"机构=Computer Engineering Technical College Guangdong Polytechnic of Science and Technology"
615 条 记 录,以下是271-280 订阅
排序:
An Improved Algorithm of Binary Balanced Tree with Super Large-scale Data Set
An Improved Algorithm of Binary Balanced Tree with Super Lar...
收藏 引用
2018 International Conference on Computational, Modeling, Simulation and Mathematical Statistics(CMSMS 2018)
作者: Zhong-ming YANG Ya-ping CHANG Ya-ru YANG College of Computer Engineering Technical Guangdong Polytechnic of Science and Technology Zhuhai Vocational School of Polytechnics
Realization of quick search still relies on ordered data in the application scenarios of large-scale data search and analysis. This paper analyses an improved algorithm of realizing super large-scale balanced tree eff... 详细信息
来源: 评论
Joint Task Assignment and Resource Allocation for D2D-Enabled Mobile-Edge Computing
Joint Task Assignment and Resource Allocation for D2D-Enable...
收藏 引用
作者: Xing, Hong Liu, Liang Xu, Jie Nallanathan, Arumugam College of Information Engineering Shenzhen University Shenzhen518060 China Department of Electronic and Information Engineering Hong Kong Polytechnic University Hong Kong Hong Kong School of Information Engineering Guangdong University of Technology Guangzhou510006 China School of Electronic Engineering and Computer Science Queen Mary University of London LondonE1 4NS United Kingdom National Mobile Communications Research Laboratory Southeast University Nanjing211189 China
With the proliferation of computation-extensive and latency-critical applications in the 5G and beyond networks, mobile-edge computing (MEC) or fog computing, which provides cloud-like computation and/or storage capab... 详细信息
来源: 评论
The CMS Statistical Analysis and Combination Tool: Combine
收藏 引用
Computing and Software for Big science 2024年 第1期8卷 1-45页
作者: Zhokin, A. Zhizhin, I. Zarubin, A. Yuldashev, B.S. Voytishin, N. Vorotnikov, G. Vorobyev, A. Volkov, P. Uzunian, A. Uvarov, L. Toropin, A. Tlisova, I. Teryaev, O. Terkulov, A. Tcherniaev, E. Sulimov, V. Sosnov, D. Smirnov, V. Slabospitskii, S. Skovpen, Y. Shulha, S. Shmatov, S. Shalaev, V. Savrin, V. Savina, M. Radchenko, O. Popov, V. Polikarpov, S. Perfilov, M. Perelygin, V. Palichik, V. Oreshkin, V. Obraztsov, S. Nikitenko, A. Murzin, V. Matveev, V. Malakhov, A. Makarenko, V. Lychkovskaya, N. Levchenko, P. Lanev, A. Krasnikov, N. Kozyrev, A. Korenkov, V. Konstantinov, D. Kodolova, O. Klyukhin, V. Kirsanov, M. Kirpichnikov, D. Kirakosyan, M. Kim, V. Karneyeu, A. Karjavine, V. Kachanov, V. Ivanov, Y. Gribushin, A. Gorbunov, I. Golutvin, I. Golubev, N. Golovtcov, V. Gninenko, S. Gavrilov, V. Gavrilov, G. Dudko, L. Dubinin, M. Druzhkin, D. Dimova, T. Dermenev, A. Chistov, R. Chekhovsky, V. Chadeeva, M. Bunichev, V. Budkouski, D. Borshch, V. Boos, E. Blinov, V. Babaev, A. Azarkin, M. Aushev, T. Andreev, Yu. Andreev, V. Alexakhin, V. Afanasiev, S. Warden, A. Vetens, W. Tsoi, H.F. Teague, D. Smith, W.H. Sharma, V. Shang, V. Savin, A. Pinna, D. Pétré, L. Parida, G. Mondal, S. Mohammadi, A. Mallampalli, A. Sreekala, J. Madhusudanan Loveless, R. Lanaro, A. Koraka, C.K. Herve, A. Herndon, M. He, H. Galloni, C. Everaerts, P. De Bruyn, I. Dasu, S. Bose, T. Black, K. Banerjee, S. Aravind, A. Karchin, P.E. Bhattacharya, S. Neu, C. Ledovskoy, A. Hirosky, R. Hakala, J. Cox, B. Cardwell, B. Viinikainen, J. Velkovska, J. Tuo, S. Sheldon, P. Romeo, F. Melo, A. Elayavalli, R. Kunnawalkam Johns, W. Gurrola, A. Greene, S. Chen, Y. Appelt, E. Volobouev, I. Peltola, T. Mankel, A. Lee, S.W. Lamichhane, K. Kazhykarim, Y. Hussain, A. Hegde, V. Gogate, N. Damgov, J. Akchurin, N. Safonov, A. Rathjens, D. Overton, D. Mueller, R. Luo, S. Kim, H. Kamon, T. Huang, T. Gilmore, J. Eusebi, R. Bouhali, O. Akhter, T. Ahmad, M. Aebi, D. Spanier, S. Nibigira, E. Lee, L. Karunarathna, N. Kanuganti, A.R. Holmes, T. Higginbotham, S. Fiorendi, S. Delannoy Yerevan Physics Institute Yerevan Armenia Institut für Hochenergiephysik Vienna Austria Universiteit Antwerpen Antwerpen Belgium Vrije Universiteit Brussel Brussel Belgium Université Libre de Bruxelles Bruxelles Belgium Ghent University Ghent Belgium Université Catholique de Louvain Louvain-la-Neuve Belgium Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro Brazil Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil Universidade Estadual Paulista Universidade Federal do ABC São Paulo Brazil Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences Sofia Bulgaria University of Sofia Sofia Bulgaria Instituto De Alta Investigación Universidad de Tarapacá Casilla 7 D Arica Chile Beihang University Beijing China Department of Physics Tsinghua University Beijing China Institute of High Energy Physics Beijing China State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China Guangdong Provincial Key Laboratory of Nuclear Science and Guangdong-Hong Kong Joint Laboratory of Quantum Matter South China Normal University Guangzhou China Sun Yat-Sen University Guangzhou China University of Science and Technology of China Hefei China Nanjing Normal University Nanjing China Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) Institute of Modern Physics Fudan University Shanghai China Zhejiang University Hangzhou Zhejiang China Universidad de Los Andes Bogota Venezuela Universidad de Antioquia Medellin Colombia Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture University of Split Split Croatia Faculty of Science University of Split Split Croatia Institute Rudjer Boskovic Zagreb Croatia University of Cyprus Nicosia Cyprus Charles University Prague Czech Republic Universidad San Francisco de Quito Quito Ecuador Egyptian Network of High Energy Physics Academy of Scientific Research and Technology of the Arab Republic of Egypt Cairo Egypt Center for High
This paper describes the Combine software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searc... 详细信息
来源: 评论
The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels (vol 400, pg 1619, 2022)
收藏 引用
LANCET 2022年 第10365期400卷 1766-1766页
作者: Romanello, M. Di Napoli, C. Drummond, P. Institute for Global Health University College London London UK School of Agriculture Policy and Development University of Reading Reading UK Institute for Sustainable Resources University College London London UK Department of Global Health Centre for Health and the Global Environment University of Washington Seattle WA USA UCL Energy Institute University College London London UK Department of Health Sciences University of York York UK Department of Meteorology University of Reading Reading UK Institute for Risk and Disaster Reduction University College London London UK School of Earth and Environment University of Leeds Leeds UK Centre on Climate Change and Planetary Health London School of Hygiene & Tropical Medicine London UK School of Population Health University of Melbourne Melbourne VIC Australia Department of Earth System Science Tsinghua University Beijing China Mercator Research Institute on Global Commons and Climate Change Berlin Germany Department of Environment Climate Change and Health World Health Organization Geneva Switzerland Institute of Environmental Sciences University of Geneva Geneva Switzerland Cardiovascular Epidemiology Unit Department of Public Health & Primary Care University of Cambridge Cambridge UK School of Government University of Birmingham Birmingham UK Economic Analysis of Climate Impacts and Policy Division Centro Euro-Mediterraneo sui Cambiamenti Climatici Venice Italy Institute for Environmental Design and Engineering University College London London UK Natural Resources Institute University of Greenwich London UK Department of Environmental Health Sciences and Yale Center on Climate Change and Health Yale University New Haven CT USA Department of Civil and Environmental Engineering Northeastern University Boston MA USA Department of Fish and Wildlife Conservation Virginia Polytechnic Institute and State University Blacksburg VA USA Department of Geography University College London London UK NU
With advancements in the science of detection and attribution studies, the influence of climate change over many events has now been quantified.Because of the rapidly increasing temperatures, vulnerable populations (a...
来源: 评论
Medical Image Registration Based on Moving Manifold Regularization
Medical Image Registration Based on Moving Manifold Regulari...
收藏 引用
IEEE International Conference on Big Data and Cloud Computing (BdCloud)
作者: Wei Zhang Huabing Zhou Yicheng Yang Changcai Yang Zhenghong Yu Hubei Provincial Key Laboratory of Intelligent Robot Wuhan Institute of Technology Wuhan China College of Computer and Information Sciences Fujian Agriculture and Forestry University FuZhou China College of Mechanical and Electrical Engineering Guangdong Polytechnic of Science and Technology Zhuhai China
We propose a new registration framework, namely moving manifold regularization, for solving medical image registration problems. The proposed method first uses the Snake model to obtain the region of interest on the i... 详细信息
来源: 评论
Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service
收藏 引用
Computing and Software for Big science 2024年 第1期8卷 1-36页
作者: Hayrapetyan, A. Tumasyan, A. Adam, W. Andrejkovic, J.W. Bergauer, T. Chatterjee, S. Damanakis, K. Dragicevic, M. Hussain, P.S. Jeitler, M. Krammer, N. Li, A. Liko, D. Mikulec, I. Schieck, J. Schöfbeck, R. Schwarz, D. Sonawane, M. Templ, S. Waltenberger, W. Wulz, C.-E. Darwish, M.R. Janssen, T. Mechelen, P. Van Bols, E.S. D’Hondt, J. Dansana, S. De Moor, A. Delcourt, M. Faham, H. El Lowette, S. Makarenko, I. Müller, D. Sahasransu, A.R. Tavernier, S. Tytgat, M. Onsem, G. P. Van Putte, S. Van Vannerom, D. Clerbaux, B. Das, A.K. De Lentdecker, G. Favart, L. Gianneios, P. Hohov, D. Jaramillo, J. Khalilzadeh, A. Khan, F.A. Lee, K. Mahdavikhorrami, M. Malara, A. Paredes, S. Thomas, L. Bemden, M. Vanden Velde, C. Vander Vanlaer, P. De Coen, M. Dobur, D. Hong, Y. Knolle, J. Lambrecht, L. Mestdach, G. Amarilo, K. Mota Rendón, C. Samalan, A. Skovpen, K. Bossche, N. Van Den Linden, J. van der Wezenbeek, L. Benecke, A. Bethani, A. Bruno, G. Caputo, C. Delaere, C. Donertas, I.S. Giammanco, A. Jaffel, K. Jain, Sh. Lemaitre, V. Lidrych, J. Mastrapasqua, P. Mondal, K. Tran, T.T. Wertz, S. Alves, G.A. Coelho, E. Hensel, C. De Oliveira, T. Menezes Moraes, A. Teles, P. Rebello Soeiro, M. Júnior, W. L. Aldá Pereira, M. Alves Gallo Filho, M. Barroso Ferreira Malbouisson, H. Brandao Carvalho, W. Chinellato, J. Da Costa, E.M. Da Silveira, G.G. De Jesus Damiao, D. De Souza, S. Fonseca De Souza, R. Gomes Martins, J. Herrera, C. Mora Mundim, L. Nogima, H. Pinheiro, J.P. Santoro, A. Sznajder, A. Thiel, M. Pereira, A. Vilela Bernardes, C.A. Calligaris, L. Tomei, T. R. Fernandez Perez Gregores, E.M. Mercadante, P.G. Novaes, S.F. Orzari, B. Padula, Sandra S. Aleksandrov, A. Antchev, G. Hadjiiska, R. Iaydjiev, P. Misheva, M. Shopova, M. Sultanov, G. Dimitrov, A. Litov, L. Pavlov, B. Petkov, P. Petrov, A. Shumka, E. Keshri, S. Thakur, S. Cheng, T. Javaid, T. Yuan, L. Hu, Z. Liu, J. Yi, K. Chen, G.M. Chen, H.S. Chen, M. Iemmi, F. Jiang, C.H. Kapoor, A. Liao, H. Liu, Z.-A. Sharma, R. Song, J.N. Tao, J. Wang, C. Wang, J. Wang, Z. Zhang, H. Agapitos Yerevan Physics Institute Yerevan Armenia Institut für Hochenergiephysik Vienna Austria Universiteit Antwerpen Antwerpen Belgium Vrije Universiteit Brussel Brussel Belgium Université Libre de Bruxelles Bruxelles Belgium Ghent University Ghent Belgium Université Catholique de Louvain Louvain-la-Neuve Belgium Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro Brazil Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil Universidade Estadual Paulista Universidade Federal do ABC São Paulo Brazil Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences Sofia Bulgaria University of Sofia Sofia Bulgaria Instituto De Alta Investigación Universidad de Tarapacá Casilla 7 D Arica Chile Beihang University Beijing China Department of Physics Tsinghua University Beijing China Institute of High Energy Physics Beijing China State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China Sun Yat-sen University Guangzhou China University of Science and Technology of China Hefei China Nanjing Normal University Nanjing China Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University Shanghai China Zhejiang University Hangzhou Zhejiang China Universidad de Los Andes Bogota Colombia Universidad de Antioquia Medellin Colombia University of Split Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture Split Croatia Faculty of Science University of Split Split Croatia Institute Rudjer Boskovic Zagreb Croatia University of Cyprus Nicosia Cyprus Charles University Prague Czech Republic Escuela Politecnica Nacional Quito Ecuador Universidad San Francisco de Quito Quito Ecuador Academy of Scientific Research and Technology of the Arab Republic of Egypt Egyptian Network of High Energy Physics Cairo Egypt Center for High Energy Physics (CHEP-FU) Fayoum University El-Fayoum Egypt National Institute of Chemical Physics and Biophysic
Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on cen... 详细信息
来源: 评论
A review of uncertainty quantification in deep learning: Techniques, applications and challenges
arXiv
收藏 引用
arXiv 2020年
作者: Abdar, Moloud Pourpanah, Farhad Hussain, Sadiq Rezazadegan, Dana Liu, Li Ghavamzadeh, Mohammad Fieguth, Paul Cao, Xiaochun Khosravi, Abbas Rajendra Acharya, U. Makarenkov, Vladimir Nahavandi, Saeid Deakin University Australia College of Mathematics and Statistics Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China Dibrugarh University Dibrugarh India Department of Computer Science and Software Engineering Swinburne University of Technology Melbourne Australia Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland Google research United States Department of Systems Design Engineering University of Waterloo Waterloo Canada State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China Department of Electronics and Computer Engineering Ngee Ann Polytechnic Clementi Singapore Department of Computer Science University of Quebec in Montreal MontrealQC Canada
—Uncertainty quantification (UQ) plays a pivotal role in the reduction of uncertainties during both optimization and decision making, applied to solve a variety of real-world applications in science and engineering. ... 详细信息
来源: 评论
Green Energy Sources: Issues and Challenges
Green Energy Sources: Issues and Challenges
收藏 引用
Roedunet International Conference (RoEduNet)
作者: Mostafa Abdulghafoor Mohammed Inas Adnan Mohammed Raed.A. Hasan Nicolae Ţăpuş Ahmed Hussien Ali Omar A. Hammood Faculty of Automatic Control and Computers University Polytechnic of Bucharest/Romania The Great Emam University College Baghdad University of Information Technology and Communications / college of Engineering/ Baghdad Iraq Faculty of Al-dour Technical institute Northern Technical University Mosel IRAQ Faculty of Automatic Control and Computers University Polytechnic of Bucharest/Romania Computer Science Department AL Salam University College Baghdad Iraq Faculty of Computer Systems and Software Engineering UniversityMalaysia Pahang Malaysia
Mobile offloading is a platform that facilitates the distribution of computationally intensive tasks from mobile devices to the cloud or other devices in order to conserve energy and improve performance. The concept i... 详细信息
来源: 评论
A Wide Residual Network for Sentiment Classification  18
A Wide Residual Network for Sentiment Classification
收藏 引用
2nd International Conference on Deep Learning Technologies, ICDLT 2018
作者: Wen, Yang Xu, An Liu, Wei Chen, Leiting Key Laboratory of Digital Media Technology of Sichuan Province Chengdu China School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China Dongguan Data Science Software Technology Co. Ltd Dongguan China Chengdu Vocational and Technical College of Industry Chengdu China Institute of Electronic and Information Engineering UESTC in Guangdong Dongguan China
Recurrent neural network (RNN) is a popular deep learning model for sentiment classification. Most RNN models benefit from the power of the depth of the deep learning network. However, training a sufficiently deep RNN... 详细信息
来源: 评论
VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images
arXiv
收藏 引用
arXiv 2020年
作者: Sekuboyina, Anjany Kumar Husseini, Malek E. Bayat, Amirhossein Löffler, Maximilian Liebl, Hans Li, Hongwei Tetteh, Giles Kukačka, Jan Payer, Christian Štern, Darko Urschler, Martin Chen, Maodong Cheng, Dalong Lessmann, Nikolas Hu, Yujin Wang, Tianfu Yang, Dong Xu, Daguang Ambellan, Felix Amiranashvili, Tamaz Ehlke, Moritz Lamecker, Hans Lehnert, Sebastian Lirio, Marilia de Olaguer, Nicolás Pérez Ramm, Heiko Sahu, Manish Tack, Alexander Zachow, Stefan Jiang, Tao Ma, Xinjun Angerman, Christoph Wang, Xin Brown, Kevin Kirszenberg, Alexandre Puybareau, Élodie Chen, Di Bai, Yiwei Rapazzo, Brandon H. Yeah, Timyoas Zhang, Amber Xu, Shangliang Hou, Feng He, Zhiqiang Zeng, Chan Xiangshang, Zheng Liming, Xu Netherton, Tucker J. Mumme, Raymond P. Court, Laurence E. Huang, Zixun He, Chenhang Wang, Li-Wen Ling, Sai Ho Huynh, Lê Duy Boutry, Nicolas Jakubicek, Roman Chmelik, Jiri Mulay, Supriti Sivaprakasam, Mohanasankar Paetzold, Johannes C. Shit, Suprosanna Ezhov, Ivan Wiestler, Benedikt Glocker, Ben Valentinitsch, Alexander Rempfler, Markus Menze, Björn H. Kirschke, Jan S. Department of Informatics Technical University of Munich Germany Munich School of BioEngineering Technical University of Munich Germany Department of Neuroradiology Klinikum Rechts der Isar Germany Department for Quantitative Biomedicine University of Zurich Switzerland Friedrich Miescher Institute for Biomedical Engineering Switzerland Institute of Biological and Medical Imaging Helmholtz Zentrum München Germany Department of Computing Imperial College London United Kingdom Institute of Computer Graphics and Vision Graz University of Technology Austria Gottfried Schatz Research Center: Biophysics Medical University of Graz Austria School of Computer Science The University of Auckland New Zealand Computer Vision Group iFLYTEK Research South China China Department of Radiology and Nuclear Medicine Radboud University Medical Center Nijmegen Netherlands Shenzhen Research Institute of Big Data China School of Biomedical Engineering Health Science Center Shenzhen University China NVIDIA Corporation United States Zuse Institute Berlin Germany 1000shapes GmbH Berlin Germany Damo Academy Alibaba Group China Department of Mathematics University of Innsbruck Austria Department of Electronic Engineering Fudan University China New York University United States France Deep Reasoning AI Inc United States Technical University of Munich Germany East China Normal University China Chinese Academy of Sciences China Lenovo Group China Ping An Technologies China College of Computer Science and Technology Zhejiang University China Real Doctor AI Research Centre Zhejiang University China The University of Texas MD Anderson Cancer Center United States Department of Electronic and Information Engineering The Hong Kong Polytechnic University China Department of Computing The Hong Kong Polytechnic University China The School of Biomedical Engineering University of Technology Sydney Australia Department of Biomedical Engineering Brno University of Technology Czech Republic India
Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for d... 详细信息
来源: 评论