WSN is used in a variety of critical environments to monitor certain parameters such as border monitoring systems, among others. If any illegal devices are introduced or inserted into this network, it will result in s...
详细信息
Today, looking after our mental health has become as essential as maintaining our physical health and well-being. It is found that a lot of people belonging to different age groups, gender and a wide range of professi...
详细信息
Autonomous navigation in dynamic environments poses significant challenges due to complex agent–environment interactions, real-time decision-making, and adaptability requirements. We propose the Reinforcement-Imitati...
详细信息
Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given ***,most existing GAN-based translation methods fail to produce photorealistic *** this st...
详细信息
Exemplar-based image translation involves converting semantic masks into photorealistic images that adopt the style of a given ***,most existing GAN-based translation methods fail to produce photorealistic *** this study,we propose a new diffusion model-based approach for generating high-quality images that are semantically aligned with the input mask and resemble an exemplar in *** proposed method trains a conditional denoising diffusion probabilistic model(DDPM)with a SPADE module to integrate the semantic *** then used a novel contextual loss and auxiliary color loss to guide the optimization process,resulting in images that were visually pleasing and semantically *** demonstrate that our method outperforms state-of-the-art approaches in terms of both visual quality and quantitative metrics.
Reinforcement learning (RL) and imitation learning (IL) are quite two useful machine learning techniques that were shown to be potential in enhancing navigation performance. Basically, both of these methods try to fin...
详细信息
Purpose: This review paper explores diverse synthesis strategies within the sol–gel technique for producing silicate bioglass with a focus on tailoring these materials for bone scaffold design. Method: A comprehensiv...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
作者:
A.E.M.EljialyMohammed Yousuf UddinSultan AhmadDepartment of Information Systems
College of Computer Engineering and SciencesPrince Sattam Bin Abdulaziz UniversityAlkharjSaudi Arabia Department of Computer Science
College of Computer Engineering and SciencesPrince Sattam Bin Abdulaziz UniversityAlkharjSaudi Arabiaand also with University Center for Research and Development(UCRD)Department of Computer Science and EngineeringChandigarh UniversityPunjabIndia
Intrusion detection systems (IDSs) are deployed to detect anomalies in real time. They classify a network’s incoming traffic as benign or anomalous (attack). An efficient and robust IDS in software-defined networks i...
详细信息
Intrusion detection systems (IDSs) are deployed to detect anomalies in real time. They classify a network’s incoming traffic as benign or anomalous (attack). An efficient and robust IDS in software-defined networks is an inevitable component of network security. The main challenges of such an IDS are achieving zero or extremely low false positive rates and high detection rates. Internet of Things (IoT) networks run by using devices with minimal resources. This situation makes deploying traditional IDSs in IoT networks unfeasible. Machine learning (ML) techniques are extensively applied to build robust IDSs. Many researchers have utilized different ML methods and techniques to address the above challenges. The development of an efficient IDS starts with a good feature selection process to avoid overfitting the ML model. This work proposes a multiple feature selection process followed by classification. In this study, the Software-defined networking (SDN) dataset is used to train and test the proposed model. This model applies multiple feature selection techniques to select high-scoring features from a set of features. Highly relevant features for anomaly detection are selected on the basis of their scores to generate the candidate dataset. Multiple classification algorithms are applied to the candidate dataset to build models. The proposed model exhibits considerable improvement in the detection of attacks with high accuracy and low false positive rates, even with a few features selected.
The Internet of Things is a novel example for communication which use the internet to connect a extensive range of common place things. A new age of clever gadgets that are effortlessly integrated into our day-To-day ...
详细信息
With the global population steadily gravitating towards urban living, the demand for innovative and sustainable waste management solutions is paramount. This paper presents a comprehensive framework for Smart Waste Ma...
详细信息
暂无评论