Due to the probability characteristics of quantum mechanism, the combination of quantum mechanism and intelligent algorithm has received wide attention. Quantum dynamics theory uses the Schr?dinger equation as a quant...
详细信息
Due to the probability characteristics of quantum mechanism, the combination of quantum mechanism and intelligent algorithm has received wide attention. Quantum dynamics theory uses the Schr?dinger equation as a quantum dynamics equation. Through three approximation of the objective function, quantum dynamics framework(QDF) is obtained which describes basic iterative operations of optimization algorithms. Based on QDF, this paper proposes a potential barrier estimation(PBE) method which originates from quantum mechanism. With the proposed method, the particle can accept inferior solutions during the sampling process according to a probability which is subject to the quantum tunneling effect, to improve the global search capacity of optimization *** effectiveness of the proposed method in the ability of escaping local minima was thoroughly investigated through double well function(DWF), and experiments on two benchmark functions sets show that this method significantly improves the optimization performance of high dimensional complex functions. The PBE method is quantized and easily transplanted to other algorithms to achieve high performance in the future.
Mashup developers often need to find open application programming interfaces(APIs) for their composition application development. Although most enterprises and service organizations have encapsulated their businesses ...
详细信息
Mashup developers often need to find open application programming interfaces(APIs) for their composition application development. Although most enterprises and service organizations have encapsulated their businesses or resources online as open APIs, finding the right high-quality open APIs is not an easy task from a library with several open APIs. To solve this problem, this paper proposes a deep learning-based open API recommendation(DLOAR) approach. First, the hierarchical density-based spatial clustering of applications with a noise topic model is constructed to build topic models for Mashup clusters. Second,developers' requirement keywords are extracted by the Text Rank algorithm, and the language model is built. Third, a neural network-based three-level similarity calculation is performed to find the most relevant open APIs. Finally, we complement the relevant information of open APIs in the recommended list to help developers make better choices. We evaluate the DLOAR approach on a real dataset and compare it with commonly used open API recommendation approaches: term frequency-inverse document frequency, latent dirichlet allocation, Word2Vec, and Sentence-BERT. The results show that the DLOAR approach has better performance than the other approaches in terms of precision, recall, F1-measure, mean average precision,and mean reciprocal rank.
Brain tumor detection remains a critical focus in neuro-oncology, requiring precise and efficient diagnostic methods to support timely clinical decisions. Magnetic Resonance Imaging (MRI) is the modality of choice for...
详细信息
This paper focuses on the finite-time control(FTC) of the composite formation consensus(CFC)problems for multi-robot systems(MRSs). The CFC problems are firstly proposed for MRSs under the complex network topology of ...
详细信息
This paper focuses on the finite-time control(FTC) of the composite formation consensus(CFC)problems for multi-robot systems(MRSs). The CFC problems are firstly proposed for MRSs under the complex network topology of cooperative or cooperative-competitive networks. Regarding the problems of FTC and CFC on multiple Lagrange systems(MLSs), coupled sliding variables are introduced to deal with the robustness and consistent convergence. Then, the adaptive finite-time protocols are given based on the displacement approaches. With the premised FTC, tender-tracking methods are further developed for the problems of tracking information disparity. Stability analyses of those MLSs mentioned above are clarified with Lyapunov candidates considering the coupled sliding vectors, which provide new verification for tender-tracking systems. Under the given coupled-sliding-variable-based finite-time protocols, MLSs distributively adjust the local formation error to achieve global CFC and perform uniform convergence in time-varying tracking. Finally, simulation experiments are conducted while providing practical solutions for the theoretical results.
Energy efficiency has emerged as a critical concern in Wireless Sensor Networks (WSN). Sensor nodes deplete their energy faster and die earlier making whole network unstable due to poor clustering in the network. Ther...
详细信息
In the high power laser system of inertial Confinement fusion (ICF), in order to improve the safe operation flux of the system, near-field beam shaping is necessary to output the laser beam with uniform and smooth int...
详细信息
Pests and diseases pose significant threats to crop safety and accessibility. Deep learning integration with traditional pest management fosters sustainable agriculture, minimizes chemical pesticide use, and facilitat...
详细信息
As Google has made its large-scale dataset available to the public, innovation in the field of Google Landmark Classifications has taken a forefront for research in field of Deep Learning. The Google dataset contains ...
详细信息
Images Quality in the Transportation industry is considered the most significant term and gains more attention among the higher authorities and researchers. Therefore, the accuracy level of the image has been evaluate...
详细信息
A sustainably governed water-ecosystem at village-level is crucial for the community's well-being. It requires understanding natures’ limits to store and yield water and balance it with the stakeholders’ needs, ...
详细信息
暂无评论