Autism spectrum disorder(ASD)is a multifaceted neurological developmental condition that manifests in several *** all autistic children remain undiagnosed before the age of *** problems affecting face features are oft...
详细信息
Autism spectrum disorder(ASD)is a multifaceted neurological developmental condition that manifests in several *** all autistic children remain undiagnosed before the age of *** problems affecting face features are often associated with fundamental brain *** facial evolution of newborns with ASD is quite different from that of typically developing *** recognition is very significant to aid families and parents in superstition and *** facial features from typically developing children is an evident manner to detect children analyzed with ***,artificial intelligence(AI)significantly contributes to the emerging computer-aided diagnosis(CAD)of autism and to the evolving interactivemethods that aid in the treatment and reintegration of autistic *** study introduces an Ensemble of deep learning models based on the autism spectrum disorder detection in facial images(EDLM-ASDDFI)*** overarching goal of the EDLM-ASDDFI model is to recognize the difference between facial images of individuals with ASD and normal *** the EDLM-ASDDFI method,the primary level of data pre-processing is involved by Gabor filtering(GF).Besides,the EDLM-ASDDFI technique applies the MobileNetV2 model to learn complex features from the pre-processed *** the ASD detection process,the EDLM-ASDDFI method uses ensemble techniques for classification procedure that encompasses long short-term memory(LSTM),deep belief network(DBN),and hybrid kernel extreme learning machine(HKELM).Finally,the hyperparameter selection of the three deep learning(DL)models can be implemented by the design of the crested porcupine optimizer(CPO)*** extensive experiment was conducted to emphasize the improved ASD detection performance of the EDLM-ASDDFI *** simulation outcomes indicated that the EDLM-ASDDFI technique highlighted betterment over other existing models in terms of numerous performance measures.
In recent decades ballistocardiography (BCG) has regained popularity as a way to measure the mechanical activ- ity of the heart. In this paper we present and evaluate a new iteration of our mobile BCG measurement syst...
详细信息
In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained ***,many existing methods based on this approach have a limitation:their transformati...
详细信息
In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained ***,many existing methods based on this approach have a limitation:their transformation functions are too simple to imitate complex colour transformations between low-quality images and manually retouched high-quality *** order to address this limitation,a simple yet effective approach for image enhancement is *** proposed algorithm based on the channel-wise intensity transformation is ***,this transformation is applied to the learnt embedding space instead of specific colour spaces and then return enhanced features to *** this end,the authors define the continuous intensity transformation(CIT)to describe the mapping between input and output intensities on the embedding ***,the enhancement network is developed,which produces multi-scale feature maps from input images,derives the set of transformation functions,and performs the CIT to obtain enhanced *** experiments on the MIT-Adobe 5K dataset demonstrate that the authors’approach improves the performance of conventional intensity transforms on colour space ***,the authors achieved a 3.8%improvement in peak signal-to-noise ratio,a 1.8%improvement in structual similarity index measure,and a 27.5%improvement in learned perceptual image patch ***,the authors’algorithm outperforms state-of-the-art alternatives on three image enhancement datasets:MIT-Adobe 5K,Low-Light,and Google HDRþ.
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and ***,achieving a balance between the quality...
详细信息
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and ***,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains *** This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and ***,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image *** this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of *** rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image *** detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in *** addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light *** Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,*** achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering *** Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR ***,the handling of morphing artifacts in the parallax image regions remains a topic for future resea
Go, a programming language developed by Google, is relatively new but offers modern and powerful features, including similarities to Java and an emphasis on rapid development and concurrency. This paper examines Go...
详细信息
In the realm of education, the pursuit of effective learning outcomes often faces the challenge of limited resources. This paper explores the intersection of maximizing learning outcomes and minimizing costs through a...
详细信息
Kidney disease (KD) is a gradually increasing global health concern. It is a chronic illness linked to higher rates of morbidity and mortality, a higher risk of cardiovascular disease and numerous other illnesses, and...
详细信息
In this paper, we consider partial, feature-oriented digital twins of several virtual museums and formulate an approach to assessing them from the viewpoint of their reliability. Although the formulation specifically ...
详细信息
To address the problem of inaccurate prediction of slab quality in continuous casting, an algorithm based on particle swarm optimisation and differential evolution is proposed. The algorithm combines BP neural network...
详细信息
Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic *** signals are highly chaotic compared to normal brain signals and thus...
详细信息
Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic *** signals are highly chaotic compared to normal brain signals and thus can be identified from EEG *** the current seizure detection and classification landscape,most models primarily focus on binary classification—distinguishing between seizure and non-seizure *** effective for basic detection,these models fail to address the nuanced stages of seizures and the intervals between *** identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure alert *** granularity is essential for improving patient-specific interventions and developing proactive seizure management *** study addresses this gap by proposing a novel AI-based approach for seizure stage classification using a Deep Convolutional Neural Network(DCNN).The developed model goes beyond traditional binary classification by categorizing EEG recordings into three distinct classes,thus providing a more detailed analysis of seizure *** enhance the model’s performance,we have optimized the DCNN using two advanced techniques:the Stochastic Gradient Algorithm(SGA)and the evolutionary Genetic Algorithm(GA).These optimization strategies are designed to fine-tune the model’s accuracy and ***,k-fold cross-validation ensures the model’s reliability and generalizability across different data *** and validated on the Bonn EEG data sets,the proposed optimized DCNN model achieved a test accuracy of 93.2%,demonstrating its ability to accurately classify EEG *** summary,the key advancement of the present research lies in addressing the limitations of existing models by providing a more detailed seizure classification system,thus potentially enhancing the effectiveness of real-time seizure prediction and management systems in clinic
暂无评论