Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for u...
详细信息
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embe...
详细信息
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embeddings for users and items or employ compact embeddings to enhance reusability and reduce memory usage. However, these approaches consider only the coarse-grained aspects of embeddings, overlooking subtle semantic nuances. This limitation results in an adversarial degradation of meta-embedding performance, impeding the system's ability to capture intricate relationships between users and items, leading to suboptimal recommendations. To address this, we propose a novel approach to efficiently learn meta-embeddings with varying grained and apply fine-grained meta-embeddings to strengthen the representation of their coarse-grained counterparts. Specifically, we introduce a recommender system based on a graph neural network, where each user and item is represented as a node. These nodes are directly connected to coarse-grained virtual nodes and indirectly linked to fine-grained virtual nodes, facilitating learning of multi-grained semantics. Fine-grained semantics are captured through sparse meta-embeddings, which dynamically balance embedding uniqueness and memory constraints. To ensure their sparseness, we rely on initialization methods such as sparse principal component analysis combined with a soft thresholding activation function. Moreover, we propose a weight-bridging update strategy that aligns coarse-grained meta-embedding with several fine-grained meta-embeddings based on the underlying semantic properties of users and items. Comprehensive experiments demonstrate that our method outperforms existing baselines. The code of our proposal is available at https://***/htyjers/C2F-MetaEmbed.
This study examines the use of experimental designs, specifically full and fractional factorial designs, for predicting Alzheimer’s disease with fewer variables. The full factorial design systematically investigates ...
详细信息
Deep learning architectures have exhibited robust performance in short-term load forecasting tasks, contingent upon access to substantial training datasets. However, the acquisition of such datasets presents significa...
详细信息
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each ***,all these leads report different aspects of an *** differences lie in the level of hig...
详细信息
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each ***,all these leads report different aspects of an *** differences lie in the level of highlighting and displaying information about that *** example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other *** this article,a new model was proposed using ECG functional and structural dependencies between heart *** the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed *** mutual information indices were used to assess the relationship between *** order to calculate mutual information,the correlation between the 12 ECG leads has been *** output of this step is a matrix containing all mutual ***,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac *** architecture of this capsule neural network has been modified to perform the classification *** the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman *** evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art *** proposed method shows an average accuracy of 2%superiority over similar works.
Efficient botnet detection is of great security importance and has been the focus of researchers in recent years. Botnet detection is also a difficult task due to the difficulty in distinguishing it from normal traffi...
详细信息
Plant diseases are one of the major contributors to economic loss in the agriculture industry worldwide. Detection of disease at early stages can help in the reduction of this loss. In recent times, a lot of emphasis ...
详细信息
Community question and answer (Q&A) websites have become invaluable information and knowledge-sharing sources. Effective topic modelling on these platforms is crucial for organising and navigating the vast amount ...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
暂无评论