Diabetes-oriented diabetic retinopathy impacts the blood vessels in the region of the retina to enlarge and leak blood and other fluids. In most cases, diabetic retinopathy affects both eyes. If left untreated, it wou...
详细信息
At a time when technology is spreading rapidly and widely, technology has become a necessity in daily life and practical life, and this led to the emergence of many cyber-physical systems (CPS), among which the medica...
详细信息
Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal *** this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for various stag...
详细信息
Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal *** this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for various stages and then compares the difference between CSCR before as well as after treatment using different application *** approach,which was focused on image quality,improves medical image *** enhancement algorithm was implemented to improve the OCT image contrast and denoise purpose called Boosted Anisotropic Diffusion with an Unsharp Masking Filter(BADWUMF).The classifier used here is tofigure out whether the OCT image is a CSCR case or not.150 images are checked for this research work(75 abnormal from Optical Coherence Tomography Image Retinal Database,in-house clinical database,and 75 normal images).This article explicitly decides that the approaches suggested aid the ophthalmologist with the precise retinal analysis and hence the risk factors to be *** total precision is 90 percent obtained from the Two Class Support Vector Machine(TCSVM)classifier and 93.3 percent is obtained from Shallow Neural Network with the Powell-Beale(SNNWPB)classifier using the MATLAB 2019a program.
Cloud computing distributes task-parallel among the various *** with self-service supported and on-demand service have rapid *** these applications,cloud computing allocates the resources dynami-cally via the internet...
详细信息
Cloud computing distributes task-parallel among the various *** with self-service supported and on-demand service have rapid *** these applications,cloud computing allocates the resources dynami-cally via the internet according to user *** resource allocation is vital for fulfilling user *** contrast,improper resource allocations result to load imbalance,which leads to severe service *** cloud resources implement internet-connected devices using the protocols for storing,communi-cating,and *** extensive needs and lack of optimal resource allo-cating scheme make cloud computing more *** paper proposes an NMDS(Network Manager based Dynamic Scheduling)for achieving a prominent resource allocation scheme for the *** proposed system mainly focuses on dimensionality problems,where the conventional methods fail to address *** proposed system introduced three–threshold mode of task based on its size STT,MTT,LTT(small,medium,large task thresholding).Along with it,task mer-ging enables minimum energy consumption and response *** proposed NMDS is compared with the existing Energy-efficient Dynamic Scheduling scheme(EDS)and Decentralized Virtual Machine Migration(DVM).With a Network Manager-based Dynamic Scheduling,the proposed model achieves excellence in resource allocation compared to the other existing *** obtained results shows the proposed system effectively allocate the resources and achieves about 94%of energy efficient than the other *** evaluation metrics taken for comparison are energy consumption,mean response time,percentage of resource utilization,and migration.
Detecting non-motor drivers’helmets has significant implications for traffic ***,most helmet detection methods are susceptible to the complex background and need more accuracy and better robustness of small object de...
详细信息
Detecting non-motor drivers’helmets has significant implications for traffic ***,most helmet detection methods are susceptible to the complex background and need more accuracy and better robustness of small object detection,which are unsuitable for practical application ***,this paper proposes a new helmet-wearing detection algorithm based on the You Only Look Once version 5(YOLOv5).First,the Dilated convolution In Coordinate Attention(DICA)layer is added to the backbone *** combines the coordinated attention mechanism with atrous convolution to replace the original convolution layer,which can increase the perceptual field of the network to get more contextual ***,it can reduce the network’s learning of unnecessary features in the background and get attention to small ***,the Rebuild Bidirectional Feature Pyramid Network(Re-BiFPN)is used as a feature extraction ***-BiFPN uses cross-scale feature fusion to combine the semantic information features at the high level with the spatial information features at the bottom level,which facilitates the model to learn object features at different *** on the proposed“Helmet Wearing dataset for Non-motor Drivers(HWND),”the results show that the proposed model is superior to the current detection algorithms,with the mean average precision(mAP)of 94.3%under complex background.
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
Crop diseases have a significant impact on plant growth and can lead to reduced *** methods of disease detection rely on the expertise of plant protection experts,which can be subjective and dependent on individual ex...
详细信息
Crop diseases have a significant impact on plant growth and can lead to reduced *** methods of disease detection rely on the expertise of plant protection experts,which can be subjective and dependent on individual experience and *** address this,the use of digital image recognition technology and deep learning algorithms has emerged as a promising approach for automating plant disease *** this paper,we propose a novel approach that utilizes a convolutional neural network(CNN)model in conjunction with Inception v3 to identify plant leaf *** research focuses on developing a mobile application that leverages this mechanism to identify diseases in plants and provide recommendations for overcoming specific *** models were trained using a dataset consisting of 80,848 images representing 21 different plant leaves categorized into 60 distinct *** rigorous training and evaluation,the proposed system achieved an impressive accuracy rate of 99%.This mobile application serves as a convenient and valuable advisory tool,providing early detection and guidance in real agricultural *** significance of this research lies in its potential to revolutionize plant disease detection and management *** automating the identification process through deep learning algorithms,the proposed system eliminates the subjective nature of expert-based diagnosis and reduces dependence on individual *** integration of mobile technology further enhances accessibility and enables farmers and agricultural practitioners to swiftly and accurately identify diseases in their crops.
Network attacks, such as botnets stealing sensitive data, constitute a critical concern for administrators in the Internet area. Such attacks can be prevented using a network access control (NAC) scheme. However, exis...
详细信息
IIF(Indirect Immune Florescence)has gained much attention recently due to its importance in medical *** primary purpose of this work is to highlight a step-by-step methodology for detecting autoimmune *** use of IIF f...
详细信息
IIF(Indirect Immune Florescence)has gained much attention recently due to its importance in medical *** primary purpose of this work is to highlight a step-by-step methodology for detecting autoimmune *** use of IIF for detecting autoimmune diseases is widespread in different medical *** 80 different types of autoimmune diseases have existed in various body *** IIF has been used for image classification in both ways,manually and by using the computer-Aided Detection(CAD)*** data scientists conducted various research works using an automatic CAD system with low *** diseases in the human body can be detected with the help of Transfer Learning(TL),an advanced Convolutional Neural Network(CNN)*** baseline paper applied the manual classification to the MIVIA dataset of Human Epithelial cells(HEP)type II cells and the Sub Class Discriminant(SDA)analysis technique used to detect autoimmune *** technique yielded an accuracy of up to 90.03%,which was not reliable for detecting autoimmune disease in the mitotic cells of the *** the current research,the work has been performed on the MIVIA data set of HEP type II cells by using four well-known models of *** augmentation and normalization have been applied to the dataset to overcome the problem of overfitting and are also used to improve the performance of TL *** models are named Inception V3,Dens Net 121,VGG-16,and Mobile Net,and their performance can be calculated through parameters of the confusion matrix(accuracy,precision,recall,and F1 measures).The results show that the accuracy value of VGG-16 is 78.00%,Inception V3 is 92.00%,Dense Net 121 is 95.00%,and Mobile Net shows 88.00%accuracy,***,DenseNet-121 shows the highest performance with suitable analysis of autoimmune *** overall performance highlighted that TL is a suitable and enhanced technique compared to its ***,the proposed technique is used
With the invention of Internet-enabled devices,cloud and blockchain-based technologies,an online voting system can smoothly carry out election *** pandemic situations,citizens tend to develop panic about mass gatherin...
详细信息
With the invention of Internet-enabled devices,cloud and blockchain-based technologies,an online voting system can smoothly carry out election *** pandemic situations,citizens tend to develop panic about mass gatherings,which may influence the decrease in the number of *** urges a reliable,flexible,transparent,secure,and cost-effective voting *** proposed online voting system using cloud-based hybrid blockchain technology eradicates the flaws that persist in the existing voting system,and it is carried out in three phases:the registration phase,vote casting phase and vote counting phase.A timestamp-based authentication protocol with digital signature validates voters and candidates during the registration and vote casting *** smart contracts,third-party interventions are eliminated,and the transactions are secured in the blockchain ***,to provide accurate voting results,the practical Byzantine fault tolerance(PBFT)consensus mechanism is adopted to ensure that the vote has not been modified or ***,the overall performance of the proposed system is significantly better than that of the existing *** performance was analyzed based on authentication delay,vote alteration,response time,and latency.
暂无评论