咨询与建议

限定检索结果

文献类型

  • 319 篇 会议
  • 220 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 359 篇 工学
    • 224 篇 计算机科学与技术...
    • 174 篇 软件工程
    • 148 篇 信息与通信工程
    • 62 篇 控制科学与工程
    • 57 篇 电子科学与技术(可...
    • 43 篇 电气工程
    • 29 篇 生物工程
    • 27 篇 光学工程
    • 25 篇 机械工程
    • 18 篇 生物医学工程(可授...
    • 16 篇 动力工程及工程热...
    • 14 篇 仪器科学与技术
    • 10 篇 航空宇航科学与技...
    • 10 篇 网络空间安全
    • 7 篇 力学(可授工学、理...
    • 7 篇 化学工程与技术
  • 196 篇 理学
    • 117 篇 数学
    • 43 篇 物理学
    • 39 篇 统计学(可授理学、...
    • 36 篇 系统科学
    • 33 篇 生物学
    • 8 篇 化学
    • 7 篇 大气科学
  • 77 篇 管理学
    • 54 篇 管理科学与工程(可...
    • 30 篇 工商管理
    • 25 篇 图书情报与档案管...
  • 16 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
  • 13 篇 法学
    • 11 篇 社会学
  • 11 篇 经济学
    • 11 篇 应用经济学
  • 3 篇 农学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 17 篇 wireless sensor ...
  • 13 篇 computer network...
  • 12 篇 protocols
  • 11 篇 internet of thin...
  • 11 篇 optimization
  • 10 篇 wireless communi...
  • 10 篇 computational mo...
  • 10 篇 sensors
  • 10 篇 training
  • 9 篇 simulation
  • 9 篇 throughput
  • 8 篇 computer archite...
  • 8 篇 bandwidth
  • 8 篇 quality of servi...
  • 8 篇 energy consumpti...
  • 8 篇 scheduling
  • 8 篇 beamforming
  • 8 篇 energy efficienc...
  • 7 篇 routing
  • 7 篇 deep learning

机构

  • 11 篇 computer enginee...
  • 10 篇 state key labora...
  • 9 篇 school of electr...
  • 9 篇 state key labora...
  • 8 篇 school of electr...
  • 8 篇 guangdong key la...
  • 7 篇 institute of art...
  • 7 篇 john hopcroft ce...
  • 7 篇 the college of i...
  • 7 篇 department of co...
  • 6 篇 computer enginee...
  • 6 篇 state key lab of...
  • 6 篇 college of compu...
  • 6 篇 school of artifi...
  • 6 篇 school of comput...
  • 6 篇 department of el...
  • 5 篇 state key lab of...
  • 5 篇 non-terrestrial ...
  • 5 篇 the department o...
  • 5 篇 integrated servi...

作者

  • 23 篇 zhong-ping jiang
  • 14 篇 jiang zhong-ping
  • 11 篇 su yikai
  • 11 篇 si jiangbo
  • 10 篇 al-dhahir naofal
  • 10 篇 meng deyu
  • 9 篇 halim yanikomero...
  • 9 篇 yanikomeroglu ha...
  • 8 篇 thiele lothar
  • 7 篇 xiaofei yang
  • 7 篇 ling yuye
  • 7 篇 zheng qinghua
  • 7 篇 lothar thiele
  • 7 篇 kai ye
  • 7 篇 woehrle matthias
  • 6 篇 tao bian
  • 6 篇 luo minnan
  • 6 篇 wu qingqing
  • 6 篇 pei qingqi
  • 6 篇 xu kui

语言

  • 513 篇 英文
  • 16 篇 其他
  • 10 篇 中文
  • 1 篇 德文
检索条件"机构=Computer Engineering and Networks Lab"
540 条 记 录,以下是511-520 订阅
排序:
Are Dense labels Always Necessary for 3D Object Detection from Point Cloud?
arXiv
收藏 引用
arXiv 2024年
作者: Gao, Chenqiang Liu, Chuandong Shu, Jun Liu, Fangcen Liu, Jiang Yang, Luyu Gao, Xinbo Meng, Deyu The School of Intelligent Systems Engineering The Shen-zhen Campus of Sun Yatsen University Sun Yat-sen University Guangdong Shenzhen518107 China The School of Computer Science Wuhan University Wuhan430072 China School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xi’an Jiaotong University Shaanxi 710049 China School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing400065 China Meta Menlo Park94025 United States University of Maryland College Park20742 United States
Current state-of-the-art (SOTA) 3D object detection methods often require a large amount of 3D bounding box annotations for training. However, collecting such large-scale densely-supervised datasets is notoriously cos... 详细信息
来源: 评论
Solution of secure multi-party multi-data ranking problem based on El Gamal encryption
收藏 引用
Tongxin Xuebao/Journal on Communications 2007年 第11期28卷 1-5页
作者: Liu, Wen Luo, Shou-Shan Chen, Ping School of Computer Science and Technology Beijing University of Posts and Telecommunications Beijing 100876 China School of Software Engineering Beijing University of Posts and Telecommunications Beijing 100876 China National Key Lab. of Integrated Service Networks Xidian University Xi'an 710071 China School of Telecommunication Engineering Beijing University of Posts and Telecommunications Beijing 100876 China
Based on El Gamal homomorphic encryption, a protocol of secure multi-party multi-data ranking problem was proposed. The problem extended millionaires' problem. Furthermore, the correctness and security of this pro... 详细信息
来源: 评论
Retraction Note: Cybersecurity enhancement to detect credit card frauds in health care using new machine learning strategies
收藏 引用
Soft Computing 2024年 第1期28卷 331-331页
作者: Jayanthi, E. Ramesh, T. Kharat, Reena S. Veeramanickam, M. R. M. Bharathiraja, N. Venkatesan, R. Marappan, Raja Networks and IoT Lab Department of Computer Science and Engineering Presidency University Bangalore India Department of Computer Science & Engineering R.M.K Engineering College Chennai India Pimpri Chinchwad College of Engineering Pune India Chitkara University Institute of Engineering and Technology Chitkara University Rajpura India SASTRA Deemed University Thanjavur India
来源: 评论
Demonstration of a Task-flow based Aircraft Collaborative Design Application in Optical Grid
Demonstration of a Task-flow based Aircraft Collaborative De...
收藏 引用
33rd European Conference and Exhibition of Optical Communication
作者: Zhengyu Wang Wei Guo Zhenyu Sun Yaohui Jin Weiqiang Sun Weisheng Hu Xinhua Lin Min-You Wu Hong Liu San Fu Jun Yuan Chunming Qiao State Key Lab on Fiber-Optic Local Area Networks and Advanced Optical Communication systems Shanghai Jiao Tong University P. R. China 200240 Grid Computing Center Shanghai Jiao Tong University China 200240 Institute of Aerospace Science and Technology Shanghai Jiao Tong University China 200240 Shanghai Supercomputer Center Shanghai China 201203 Computer Science & Engineering State University of New York at Buffalo NY 14260 USA
One task-flow scheduler has been designed to optimally allocate resources for a task-flow based Aircraft Collaborative Design Application in Optical Grid. This scheduler and application has been deployed on an Optical... 详细信息
来源: 评论
Disentangled Noisy Correspondence Learning
arXiv
收藏 引用
arXiv 2024年
作者: Dang, Zhuohang Luo, Minnan Wang, Jihong Jia, Chengyou Han, Haochen Wan, Herun Dai, Guang Chang, Xiaojun Wang, Jingdong The School of Computer Science and Technology The Ministry of Education Key Laboratory of Intelligent Networks and Network Security The Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi'an Jiaotong University Shaanxi Xi'An710049 China SGIT AI Lab State Grid Shaanxi Electric Power Company Limited State Grid Corporation of China Shaanxi China The School of Information Science and Technology University of Science and Technology China United Arab Emirates The Baidu Inc China
Cross-modal retrieval is crucial in understanding latent correspondences across modalities. However, existing methods implicitly assume well-matched training data, which is impractical as real-world data inevitably in... 详细信息
来源: 评论
Investigating Bi-level optimization for learning and vision from a unified perspective: A survey and beyond
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Risheng Gao, Jiaxin Zhang, Jin Meng, Deyu Lin, Zhouchen DUT-RU International School of Information Science & Engineering Dalian University of Technology Key Laboratory for Ubiquitous Network Service Software of Liaoning Province Dalian116024 China Department of Mathematics Southern University of Science and Technology National Center for Applied Mathematics Shenzhen China School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an Shaanxi China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Cooperative Medianet Innovation Center Shanghai Jiao Tong University Shanghai200240 China
Bi-Level Optimization (BLO) is originated from the area of economic game theory and then introduced into the optimization community. BLO is able to handle problems with a hierarchical structure, involving two levels o... 详细信息
来源: 评论
Transportation, Germs, Culture: A Dynamic Graph Model of COVID-19 Outbreak
SSRN
收藏 引用
SSRN 2020年
作者: Yang, Xiaofei Xu, Tun Jia, Peng Xia, Han Guo, Li Zhang, Lei Ye, Kai School of Computer Science and Technology Faculty of Electronic and Information Engineering Xi’an Jiaotong University Xi’an710049 China MOE Key Lab for Intelligent Networks & Networks Security Faculty of Electronic and Information Engineering Xi’an Jiaotong University Xi’an710049 China School of Automation Science and Engineering Faculty of Electronic and Information Engineering Xi’an Jiaotong University Xi’an710049 China Hugobiotech Co. Ltd. Beijing100000 China Genome Institute The First Affiliated Hospital of Xi’an Jiaotong University Xi’an710061 China The School of Life Science and Technology Xi’an Jiaotong University Xi’an710049 China China-Australia Joint Research Center for Infectious Diseases School of Public Health Xi’an Jiaotong University Health Science Center Shaanxi Xi’an710061 China Melbourne Sexual Health Centre Alfred Health Melbourne Australia Central Clinical School Faculty of Medicine Nursing and Health Sciences Monash University MelbourneVIC Australia Department of Epidemiology and Biostatistics College of Public Health Zhengzhou University Henan Zhengzhou450001 China
Background: Various forms of model have been applied to predict the trend of the epidemic since the outbreak of COVID-19 at the hardest-hit city of Wuhan. Methods: In this study, we designed a dynamic graph model, not... 详细信息
来源: 评论
Proceedings of the first workshop on weakly supervised learning (WeaSuL)
arXiv
收藏 引用
arXiv 2021年
作者: Hedderich, Michael A. Roth, Benjamin Kann, Katharina Plank, Barbara Ratner, Alex Klakow, Dietrich Madan, Vivek Khetan, Ashish Karnin, Zohar Wang, Cheng Kim, Sun Park, Taiwoo Choudhary, Sajal Park, Sunghyun Kim, Young-Bum Sarikaya, Ruhi Lee, Sungjin Huang, Xin Khetan, Ashish Cvitkovic, Milan Karnin, Zohar Cachay, Salva Rühling Boecking, Benedikt Dubrawski, Artur Tran, Linh Taghanaki, Saeid Asgari Khasahmadi, Amir Hosein Sanghi, Aditya Meyer, Matthias Thiele, Lothar Wenner, Michaela Walter, Fabian Hibert, Clément Saarland University Germany University of Vienna Austria University of Colorado Boulder United States IT University of Copenhagen Denmark University of Washington United States AWS AI Labs Amazon Alexa AI Amazon AI PostEra Technical University of Darmstadt Carnegie Mellon University Autodesk AI Lab Imperial College London Computer Engineering and Networks Laboratory ETH Zurich Zurich Switzerland Laboratory of Hydraulics Hydrology and Glaciology ETH Zurich WSL Birmensdorf Institut de Physique du Globe de Strasbourg University of Strasbourg
来源: 评论
Deep reinforcement learning for fresh data collection in UAV-assisted IoT networks
arXiv
收藏 引用
arXiv 2020年
作者: Yi, Mengjie Wang, Xijun Liu, Juan Zhang, Yan Bai, Bo State Key Lab of Integrated Service Networks Information Science Institute Xidian University Xi’an Shaanxi710071 China Science and Technology on Communication Network Laboratory Shijiazhuang Hebei050081 China School of Electronics and Communication Engineering Sun Yat-sen University Guangzhou510006 China Key Laboratory of Wireless Sensor Network & Communication Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences 865 Changning Road Shanghai200050 China School of Electrical Engineering and Computer Science Ningbo University Zhejiang315211 China 2012 Labs Huawei Technologies Co. Ltd. Hong Kong Hong Kong
Due to the flexibility and low operational cost, dispatching unmanned aerial vehicles (UAVs) to collect information from distributed sensors is expected to be a promising solution in Internet of Things (IoT), especial... 详细信息
来源: 评论
IDTxl: The information dynamics toolkit xl: A python package for the efficient analysis of multivariate information dynamics in networks
arXiv
收藏 引用
arXiv 2018年
作者: Wollstadt, Patricia Lizier, Joseph T. Vicente, Raul Finn, Conor Martinez-Zarzuela, Mario Mediano, Pedro Novelli, Leonardo Wibral, Michael MEG Unit Brain Imaging Center Goethe-University Frankfurt Fankfurt am Main Germany Centre for Complex Systems Faculty of Engineering and IT University of Sydney SydneyNSW Australia Computational Neuroscience Lab Institute of Computer Science Tartu Estonia Data61 CSIRO EppingNSW Australia Communications and Signal Theory and Telematics Engineering University of Valladolid Valladolid Spain Computational Neurodynamics Group Department of Computing Imperial College London London United Kingdom Max Planck Institute for Dynamics and Self-Organization Göttingen Germany Campus Institute for Dynamics of Biological Networks Georg-August Universität Göttingen Germany
We present IDTxl (the Information Dynamics Toolkit xl), a new open source Python toolbox for effective network inference from multivariate time series using information theory, available from GitHub (https://***/pwoll... 详细信息
来源: 评论