咨询与建议

限定检索结果

文献类型

  • 1,848 篇 会议
  • 976 篇 期刊文献
  • 15 册 图书

馆藏范围

  • 2,839 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,743 篇 工学
    • 920 篇 计算机科学与技术...
    • 704 篇 信息与通信工程
    • 699 篇 软件工程
    • 411 篇 电子科学与技术(可...
    • 286 篇 电气工程
    • 206 篇 光学工程
    • 188 篇 控制科学与工程
    • 159 篇 仪器科学与技术
    • 106 篇 机械工程
    • 89 篇 动力工程及工程热...
    • 82 篇 生物工程
    • 62 篇 网络空间安全
    • 55 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
    • 46 篇 生物医学工程(可授...
    • 42 篇 交通运输工程
    • 39 篇 建筑学
    • 38 篇 土木工程
    • 37 篇 化学工程与技术
  • 834 篇 理学
    • 430 篇 数学
    • 293 篇 物理学
    • 148 篇 统计学(可授理学、...
    • 97 篇 生物学
    • 91 篇 系统科学
    • 52 篇 化学
  • 315 篇 管理学
    • 228 篇 管理科学与工程(可...
    • 113 篇 工商管理
    • 96 篇 图书情报与档案管...
  • 55 篇 法学
    • 38 篇 社会学
  • 38 篇 医学
    • 35 篇 临床医学
  • 21 篇 经济学
  • 12 篇 文学
  • 11 篇 军事学
  • 9 篇 农学
  • 4 篇 教育学
  • 2 篇 艺术学

主题

  • 187 篇 computer network...
  • 135 篇 laboratories
  • 104 篇 wireless sensor ...
  • 79 篇 bandwidth
  • 70 篇 computational mo...
  • 63 篇 quality of servi...
  • 59 篇 protocols
  • 55 篇 wireless communi...
  • 54 篇 real time system...
  • 53 篇 throughput
  • 53 篇 interference
  • 51 篇 computer archite...
  • 49 篇 application soft...
  • 49 篇 resource managem...
  • 49 篇 delay
  • 45 篇 wireless network...
  • 44 篇 processor schedu...
  • 43 篇 hardware
  • 42 篇 signal to noise ...
  • 42 篇 energy consumpti...

机构

  • 195 篇 computer enginee...
  • 119 篇 state key labora...
  • 115 篇 state key labora...
  • 81 篇 state key labora...
  • 74 篇 shandong provinc...
  • 56 篇 computer enginee...
  • 49 篇 key laboratory o...
  • 43 篇 peng cheng labor...
  • 42 篇 shandong enginee...
  • 39 篇 computer enginee...
  • 39 篇 state key labora...
  • 36 篇 state key labora...
  • 28 篇 state key labora...
  • 27 篇 state key labora...
  • 27 篇 state key labora...
  • 26 篇 state key labora...
  • 25 篇 eth zurich compu...
  • 22 篇 frontiers scienc...
  • 21 篇 shandong fundame...
  • 21 篇 jiangsu high tec...

作者

  • 114 篇 lothar thiele
  • 69 篇 thiele lothar
  • 47 篇 wattenhofer roge...
  • 45 篇 guo hong
  • 36 篇 wang xingjun
  • 35 篇 xingjun wang
  • 31 篇 zhigang zhang
  • 28 篇 han zhu
  • 27 篇 jian-jia chen
  • 24 篇 hui li
  • 24 篇 zhang zhigang
  • 23 篇 l. thiele
  • 23 篇 zhu han
  • 23 篇 xiang cheng
  • 22 篇 haowen shu
  • 22 篇 zhiping zhou
  • 21 篇 pratyush kumar
  • 21 篇 hong guo
  • 21 篇 jan beutel
  • 21 篇 shu haowen

语言

  • 2,657 篇 英文
  • 99 篇 中文
  • 83 篇 其他
检索条件"机构=Computer Engineering and Networks Laboratory"
2839 条 记 录,以下是611-620 订阅
排序:
Robust Reinforcement Learning for Risk-Sensitive Linear Quadratic Gaussian Control
arXiv
收藏 引用
arXiv 2022年
作者: Cui, Leilei Başar, Tamer Jiang, Zhong-Ping The Control and Networks Lab Department of Electrical and Computer Engineering Tandon School of Engineering New York University BrooklynNY11201 United States The Coordinated Science Laboratory University of Illinois Urbana-Champaign UrbanaIL61801 United States
This paper proposes a novel robust reinforcement learning framework for discrete-time linear systems with model mismatch that may arise from the sim-to-real gap. A key strategy is to invoke advanced techniques from co... 详细信息
来源: 评论
An embarrassingly simple approach to semi-supervised few-shot learning  22
An embarrassingly simple approach to semi-supervised few-sho...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Xiu-Shen Wei He-Yang Xu Faen Zhang Yuxin Peng Wei Zhou School of Computer Science and Engineering Nanjing University of Science and Technology and State Key Laboratory of Integrated Services Networks Xidian University School of Computer Science and Engineering Nanjing University of Science and Technology Qingdao AInnovation Technology Group Co. Ltd Wangxuan Institute of Computer Technology Peking University CICC Alpha (Beijing) Private Equity
Semi-supervised few-shot learning consists in training a classifier to adapt to new tasks with limited labeled data and a fixed quantity of unlabeled data. Many sophisticated methods have been developed to address the...
来源: 评论
SBPF: Sensitiveness Based Pruning Framework For Convolutional Neural Network On Image Classification
arXiv
收藏 引用
arXiv 2022年
作者: Lu, Yiheng Gong, Maoguo Zhao, Wei Feng, Kai-Yuan Li, Hao State Key Laboratory of Integrated Services Networks School of Computer Science and Technology Xidian University Xi’an710071 China Key Laboratory of Intelligent Perception and Image Understanding School of Electronic Engineering Ministry of Education Xidian University Xi’an710071 China
Pruning techniques are used comprehensively to compress convolutional neural networks (CNNs) on image classification. However, the majority of pruning methods require a well pre-trained model to provide useful support... 详细信息
来源: 评论
A Framework Based on Generational and Environmental Response Strategies for Dynamic Multi-objective Optimization
arXiv
收藏 引用
arXiv 2022年
作者: Li, Qingya Liu, Xiangzhi Wang, Fuqiang Wang, Shuai Zhang, Peng Wu, Xiaoming Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China Shandong Provincial Key Laboratory of Computer Networks Shandong China Heze Branch Qilu University of Technology Shandong Academy of Sciences Biological Engineering Technology Innovation Center of Shandong Province Shandong China
Due to the dynamics and uncertainty of the dynamic multi-objective optimization problems (DMOPs), it is difficult for algorithms to find a satisfactory solution set before the next environmental change, especially for... 详细信息
来源: 评论
Data Identification Optimal Control for Quantized Linear Systems under DoS Attacks
收藏 引用
IEEE Transactions on Aerospace and Electronic Systems 2025年
作者: Wang, Xianming Li, Liwei Shen, Mouquan Zhao, Xudong Wang, Qing-Guo Zhu, Zheng Hong Nanjing Tech University School of Mechanical and Power Engineering Nanjing211816 China Nanjing Tech University College of Electrical Engineering and Control Science Nanjing211816 China Dalian University of Technology Faculty of Electronic Information and Electrical Engineering Dalian116024 China Beijing Normal University Institute of Ai and Future Networks Zhuhai519087 China BNU-HKBU United International College Guangdong Provincial Key Laboratory Irads Department of Computer Science Zhuhai519087 China York University Department of Mechanical Engineering TorontoONM3J 1P3 Canada
This paper is devoted to data identification optimal control for quantized linear systems under denial of service (DoS) attacks. A least-squares algorithm is provided to identify the unknown system matrices using a da... 详细信息
来源: 评论
Secure the 5G and Beyond networks with Zero Trust and Access Control Systems for Cloud Native Architectures
Secure the 5G and Beyond Networks with Zero Trust and Access...
收藏 引用
ACS/IEEE International Conference on computer Systems and Applications
作者: Hisham A. Kholidy Keven Disen Andrew Karam Elhadj Benkhelifa Mohammad A. Rahman Atta-Ur Rahman Ibrahim Almazyad Ahmed F. Sayed Rakia Jaziri Dept. of Networks and Computer Security College of Engineering SUNY Polytechnic Institute Utica NY USA Dept. of Networks and Comp. Security SUNY Polytechnic Institute Utica NY USA The Air Force Research Laboratory (AFRL RIGB) Rome NY USA Smart Systems AI and Cybersecurity Research Centre Staffordshire Univ. UK Dept of Electrical and Computer Engineering Florida International University USA Dept. of Computer Science Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia Dept. of Electrical and Computer Engineering Univ. of Arizona Tucson AZ USA Transmission Dept. Telecom Egypt Fayoum Egypt Paragraphe Research Lab. Univ. of Paris VIII France
5G networks are highly distributed, built on an open service-based architecture that requires multi-vendor hardware and software development environments, all of which create a high attack surface in the 5G networks t...
来源: 评论
Unlocking Mode Programming with Multi-Plane Light Conversion Using computer-Generated Hologram Optimisation
arXiv
收藏 引用
arXiv 2024年
作者: Rothe, Stefan Barbosa, Fabio Czarske, Jürgen W. Ferreira, Filipe M. Department of Applied Physics Yale University New HavenCT06520 United States Optical Networks Dept Electronic & Electrical Eng University College London United Kingdom TU Dresden Faculty of Electrical and Computer Engineering Laboratory of Measurement and Sensor System Technique Dresden01062 Germany TU Dresden Faculty of Physics Dresden01062 Germany
Programmable optical devices provide performance enhancement and flexibility to spatial multiplexing systems enabling transmission of tributaries in high-order eigenmodes of spatially-diverse transmission media, like ... 详细信息
来源: 评论
Research on Security of Key Algorithms in Intelligent Driving System
收藏 引用
Chinese Journal of Electronics 2019年 第1期28卷 29-38页
作者: LIU Shangdong WU Ye JI Yimu CHEN Chen BI Qiang JIAO Zhipeng GONG Jian WANG Ruchuan School of Computer Science and Engineering Southeast University School of Computer Science Nanjing University of Posts and Telecommunications Jiangsu Provincial Key Laboratory of Computer Network Technology Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks
With the rapid development of the smart driving technology, the security of smart driving algorithms is becoming more and more important. Four core smart driving algorithms are determined by studying the architecture ... 详细信息
来源: 评论
Semantic Communication-Aware End-to-End Routing in Large-Scale LEO Satellite networks
Semantic Communication-Aware End-to-End Routing in Large-Sca...
收藏 引用
Metaverse Computing, Networking and Applications (MetaCom), IEEE International Conference on
作者: Binquan Guo Zehui Xiong Bo Wang Tony Q. S. Quek Zhu Han State Key Laboratory of Integrated Service Networks Xidian University Xi’an P. R. China Tianjin Artificial Intelligence Innovation Center (TAIIC) Tianjin P. R. China Pillar of ISTD Singapore University of Technology and Design Singapore Department of Electrical and Computer Engineering University of Houston Houston TX USA
Enhanced by inter-satellite links, large-scale satellite networks (SNs) hold promise to deliver low-latency services globally. However, given the scarcity of available spectrum and the capacity limitations of Shannon... 详细信息
来源: 评论
Extended $T$T: Learning With Mixed Closed-Set and Open-Set Noisy Labels
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2022年 第3期45卷 3047-3058页
作者: Xiaobo Xia Bo Han Nannan Wang Jiankang Deng Jiatong Li Yinian Mao Tongliang Liu Trustworthy Machine Learning Lab School of Computer Science Faculty of Engineering University of Sydney Camperdown NSW Australia Department of Computer Science Hong Kong Baptist University Hong Kong State Key Laboratory of Integrated Services Networks School of Telecommunications Engineering Xidian University Xi'an Shaanxi China Department of Computing Imperial College London London U.K. Meituan Beijing China
The noise transition matrix $T$ , reflecting the probabilities that true labels flip into noisy ones, is of vital importance to model label noise and build statistically consistent classifiers. The traditional transi... 详细信息
来源: 评论