Stress tolerance plays a vital role in ensuring the effectiveness of piezoresistive sensing films used in flexible pressure ***,existing methods for enhancing stress tolerance employ dome-shaped,wrinkle-shaped,and pyr...
详细信息
Stress tolerance plays a vital role in ensuring the effectiveness of piezoresistive sensing films used in flexible pressure ***,existing methods for enhancing stress tolerance employ dome-shaped,wrinkle-shaped,and pyramidal-shaped microstructures in intricate molding and demolding processes,which introduce significant fabrication challenges and limit the sensing *** address these shortcomings,this paper presents periodic microslits in a sensing film made of multiwalled carbon nanotubes and polydimethylsiloxane to realize ultrahigh stress tolerance with a theoretical maximum of 2.477 MPa and a sensitivity of 18.092 kPa−*** periodic microslits permit extensive deformation under high pressure(e.g.,400 kPa)to widen the detection ***,the periodic microslits also enhance the sensitivity based on simultaneously exhibiting multiple synapses within the sensing interface and between the periodic sensing *** proposed solution is verified by experiments using sensors based on the microslit strategy for wind direction detection,robot movement sensing,and human health *** these experiments,vehicle load detection is achieved for ultrahigh pressure sensing under an ultrahigh pressure of over 400 kPa and a ratio of the contact area to the total area of 32.74%.The results indicate that the proposed microslit strategy can achieve ultrahigh stress tolerance while simplifying the fabrication complexity of preparing microstructure sensing films.
Supply chains are being used at scale within new industries, mainly in the financial sector and the cyber security risks emerging in this area have been on the rise. Given recent attack scenarios the mitigation strate...
详细信息
This research proposes a system as a solution for the challenges faced by Sri Lanka's historic railway system, such as scheduling delays, overcrowding, manual ticketing, and management inefficiencies. It proposes ...
详细信息
Peru is South America's largest producer and ex-porter of oregano (Origanum vulgare L.), with the Tacna region being the most significant contributor, cultivating 2,499 hectares and producing 11,946 tons, accounti...
详细信息
The 'CART (Career at Right Time)', a pupil/ company information system, is a web- grounded programmed. The design is grounded on the' Placement Cell' that's presently employed in the University for...
详细信息
In computer vision applications like surveillance and remote sensing,to mention a few,deep learning has had considerable *** imaging still faces a number of difficulties,including intra-class similarity,a scarcity of ...
详细信息
In computer vision applications like surveillance and remote sensing,to mention a few,deep learning has had considerable *** imaging still faces a number of difficulties,including intra-class similarity,a scarcity of training data,and poor contrast skin lesions,notably in the case of skin *** optimisation-aided deep learningbased system is proposed for accurate multi-class skin lesion *** sequential procedures of the proposed system start with preprocessing and end with *** preprocessing step is where a hybrid contrast enhancement technique is initially proposed for lesion identification with healthy *** of flipping and rotating data,the outputs from the middle phases of the hybrid enhanced technique are employed for data augmentation in the next ***,two pre-trained deep learning models,MobileNetV2 and NasNet Mobile,are trained using deep transfer learning on the upgraded enriched ***,a dual-threshold serial approach is employed to obtain and combine the features of both *** next step was the variance-controlled Marine Predator methodology,which the authors proposed as a superior optimisation *** top features from the fused feature vector are classified using machine learning *** experimental strategy provided enhanced accuracy of 94.4%using the publicly available dataset ***,the proposed framework is evaluated compared to current approaches,with remarkable results.
The process of classifying RGB images is a basic and noxious activity in computer vision with an array of applications in face recognition, traffic analysis, and security protocols. An important part of this mission e...
详细信息
In the recent past, Virtual Desktop Infrastructure (VDI) technology has experienced rapid growth. Although many enterprise companies have implemented VDI systems, previous research has highlighted several critical iss...
详细信息
The global food supply heavily relies on fisheries, highlighting the crucial importance of ensuring the safety of fish products. However, the widespread application of antibiotics and the existence of compounds such a...
详细信息
The emergence of the novel COVID-19 virus has had a profound impact on global healthcare systems and economies, underscoring the imperative need for the development of precise and expeditious diagnostic tools. Machine...
详细信息
The emergence of the novel COVID-19 virus has had a profound impact on global healthcare systems and economies, underscoring the imperative need for the development of precise and expeditious diagnostic tools. Machine learning techniques have emerged as a promising avenue for augmenting the capabilities of medical professionals in disease diagnosis and classification. In this research, the EFS-XGBoost classifier model, a robust approach for the classification of patients afflicted with COVID-19 is proposed. The key innovation in the proposed model lies in the Ensemble-based Feature Selection (EFS) strategy, which enables the judicious selection of relevant features from the expansive COVID-19 dataset. Subsequently, the power of the eXtreme Gradient Boosting (XGBoost) classifier to make precise distinctions among COVID-19-infected patients is *** EFS methodology amalgamates five distinctive feature selection techniques, encompassing correlation-based, chi-squared, information gain, symmetric uncertainty-based, and gain ratio approaches. To evaluate the effectiveness of the model, comprehensive experiments were conducted using a COVID-19 dataset procured from Kaggle, and the implementation was executed using Python programming. The performance of the proposed EFS-XGBoost model was gauged by employing well-established metrics that measure classification accuracy, including accuracy, precision, recall, and the F1-Score. Furthermore, an in-depth comparative analysis was conducted by considering the performance of the XGBoost classifier under various scenarios: employing all features within the dataset without any feature selection technique, and utilizing each feature selection technique in isolation. The meticulous evaluation reveals that the proposed EFS-XGBoost model excels in performance, achieving an astounding accuracy rate of 99.8%, surpassing the efficacy of other prevailing feature selection techniques. This research not only advances the field of COVI
暂无评论