Recently, multirobot systems(MRSs) have found extensive applications across various domains, including industrial manufacturing, collaborative formation of unmanned equipment, emergency disaster relief, and war scenar...
详细信息
Recently, multirobot systems(MRSs) have found extensive applications across various domains, including industrial manufacturing, collaborative formation of unmanned equipment, emergency disaster relief, and war scenarios [1]. These advancements are largely supported by the development of consistency control theory. However, traditional dynamicsfree models may cause instability in complex robotic systems. Lagrangian dynamics offers a better approach for modeling these systems, as it facilitates controller design and optimization analysis. Despite this, challenges persist with unknown parameters and nonlinear friction within the systems.
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but th...
详细信息
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but they cannot fully learn the features. Therefore, we propose circ-CNNED, a convolutional neural network(CNN)-based encoding and decoding framework. We first adopt two encoding methods to obtain two original matrices. We preprocess them using CNN before fusion. To capture the feature dependencies, we utilize temporal convolutional network(TCN) and CNN to construct encoding and decoding blocks, respectively. Then we introduce global expectation pooling to learn latent information and enhance the robustness of circ-CNNED. We perform circ-CNNED across 37 datasets to evaluate its effect. The comparison and ablation experiments demonstrate that our method is superior. In addition, motif enrichment analysis on four datasets helps us to explore the reason for performance improvement of circ-CNNED.
Rank aggregation is the combination of several ranked lists from a set of candidates to achieve a better ranking by combining information from different sources. In feature selection problem, due to the heterogeneity ...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
Identifying drug–target interactions (DTIs) is a critical step in both drug repositioning. The labor-intensive, time-consuming, and costly nature of classic DTI laboratory studies makes it imperative to create effici...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relativ...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relatively time-consuming but also cannot provide representative complete shape features based on partial *** this paper,a novel feature alignment fast point cloud completion network(FACNet)is proposed to directly and efficiently generate the detailed shapes of *** aligns high-dimensional feature distributions of both partial and complete point clouds to maintain global information about the complete *** its decoding process,the local features from the partial point cloud are incorporated along with the maintained global information to ensure complete and time-saving generation of the complete point *** results show that FACNet outperforms the state-of-theart on PCN,Completion3D,and MVP datasets,and achieves competitive performance on ShapeNet-55 and KITTI ***,FACNet and a simplified version,FACNet-slight,achieve a significant speedup of 3–10 times over other state-of-the-art methods.
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
Dear Editor,This letter presents a new transfer learning framework for the deep multi-agent reinforcement learning(DMARL) to reduce the convergence difficulty and training time when applying DMARL to a new scenario [1...
详细信息
Dear Editor,This letter presents a new transfer learning framework for the deep multi-agent reinforcement learning(DMARL) to reduce the convergence difficulty and training time when applying DMARL to a new scenario [1], [2].
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,a...
详细信息
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised *** this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the ***,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd *** addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density *** experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.
This paper focuses on the finite-time control(FTC) of the composite formation consensus(CFC)problems for multi-robot systems(MRSs). The CFC problems are firstly proposed for MRSs under the complex network topology of ...
详细信息
This paper focuses on the finite-time control(FTC) of the composite formation consensus(CFC)problems for multi-robot systems(MRSs). The CFC problems are firstly proposed for MRSs under the complex network topology of cooperative or cooperative-competitive networks. Regarding the problems of FTC and CFC on multiple Lagrange systems(MLSs), coupled sliding variables are introduced to deal with the robustness and consistent convergence. Then, the adaptive finite-time protocols are given based on the displacement approaches. With the premised FTC, tender-tracking methods are further developed for the problems of tracking information disparity. Stability analyses of those MLSs mentioned above are clarified with Lyapunov candidates considering the coupled sliding vectors, which provide new verification for tender-tracking systems. Under the given coupled-sliding-variable-based finite-time protocols, MLSs distributively adjust the local formation error to achieve global CFC and perform uniform convergence in time-varying tracking. Finally, simulation experiments are conducted while providing practical solutions for the theoretical results.
暂无评论