咨询与建议

限定检索结果

文献类型

  • 114 篇 期刊文献
  • 51 篇 会议

馆藏范围

  • 165 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 99 篇 理学
    • 64 篇 数学
    • 27 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 13 篇 物理学
    • 13 篇 化学
    • 12 篇 系统科学
    • 3 篇 地球物理学
  • 97 篇 工学
    • 43 篇 计算机科学与技术...
    • 32 篇 软件工程
    • 24 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 15 篇 光学工程
    • 15 篇 控制科学与工程
    • 14 篇 信息与通信工程
    • 12 篇 电气工程
    • 11 篇 化学工程与技术
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 5 篇 土木工程
    • 3 篇 建筑学
    • 3 篇 测绘科学与技术
    • 3 篇 安全科学与工程
    • 2 篇 机械工程
  • 20 篇 医学
    • 18 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 8 篇 公共卫生与预防医...
    • 7 篇 药学(可授医学、理...
  • 19 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 9 篇 image segmentati...
  • 6 篇 graphic methods
  • 4 篇 eigenvalues and ...
  • 4 篇 tumors
  • 3 篇 deep learning
  • 3 篇 sampling
  • 2 篇 chemical activat...
  • 2 篇 inverse problems
  • 2 篇 deep neural netw...
  • 2 篇 signal to noise ...
  • 2 篇 markov processes
  • 2 篇 partial differen...
  • 2 篇 surface waves
  • 2 篇 tensors
  • 2 篇 predictive model...
  • 2 篇 graph theory
  • 2 篇 integer programm...
  • 2 篇 decision making
  • 2 篇 optical surface ...
  • 2 篇 analytical model...

机构

  • 22 篇 department of ma...
  • 20 篇 department of ma...
  • 16 篇 department of ma...
  • 6 篇 medical faculty ...
  • 6 篇 school of data s...
  • 6 篇 heidelberg
  • 5 篇 helmholtz imagin...
  • 5 篇 pattern analysis...
  • 5 篇 department of ra...
  • 5 篇 department of co...
  • 5 篇 faculty of mathe...
  • 5 篇 faculty of mathe...
  • 5 篇 school of mathem...
  • 5 篇 hidss4health - h...
  • 5 篇 department of in...
  • 5 篇 college of compu...
  • 4 篇 leeds institute ...
  • 4 篇 center for psych...
  • 4 篇 department of in...
  • 4 篇 institute for pa...

作者

  • 23 篇 abiad aida
  • 10 篇 kirchhoff yannic...
  • 9 篇 jentzen arnulf
  • 7 篇 ulrich constanti...
  • 7 篇 isensee fabian
  • 6 篇 li hongwei bran
  • 6 篇 roy saikat
  • 6 篇 maier-hein klaus
  • 6 篇 leonid lyubchyk
  • 5 篇 bakas spyridon
  • 5 篇 ezhov ivan
  • 5 篇 kofler florian
  • 5 篇 olena akhiiezer
  • 5 篇 rokuss maximilia...
  • 5 篇 lyubchyk leonid
  • 5 篇 zeijlemaker sjan...
  • 5 篇 galyna grinberg
  • 4 篇 kuckuck benno
  • 4 篇 wald tassilo
  • 4 篇 meier zeke

语言

  • 157 篇 英文
  • 7 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Computer Mathematics and Data Analysis Department"
165 条 记 录,以下是31-40 订阅
排序:
On the existence of small strictly Neumaier graphs
arXiv
收藏 引用
arXiv 2023年
作者: Abiad, Aida De Boeck, Maarten Zeijlemaker, Sjanne Department of Mathematics and Computer Science Eindhoven University of Technology Netherlands Department of Mathematics: Analysis Logic and Discrete Mathematics Ghent University Belgium Department of Mathematics and Data Science of Vrije Universiteit Brussel Belgium Department of Mathematical Sciences University of Memphis United States Department of Mathematics: Algebra and Geometry Ghent University Flanders Belgium
A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this work, we prove several results on the existence of small strictly Neumaier graphs. In particular, we present a theoretical pro... 详细信息
来源: 评论
Descriptive complexity of controllable graphs
arXiv
收藏 引用
arXiv 2023年
作者: Abiad, Aida Dawar, Anuj Zapata, Octavio Department of Mathematics and Computer Science Eindhoven University of Technology Netherlands Department of Mathematics: Analysis Logic and Discrete Mathematics Ghent University Belgium Department of Mathematics and Data Science Vrije Universiteit Brussel Belgium Department of Computer Science and Technology University of Cambridge United Kingdom Instituto de Matemáticas Universidad Nacional Autónoma de México Mexico
Let G be a graph on n vertices with adjacency matrix A, and let 1 be the all-ones vector. We call G controllable if the set of vectors 1, A1, . . ., An−11 spans the whole space Rn. We characterize the isomorphism prob... 详细信息
来源: 评论
Constructing cospectral hypergraphs
arXiv
收藏 引用
arXiv 2022年
作者: Abiad, Aida Khramova, Antonina P. Department of Mathematics and Computer Science Eindhoven University of Technology Netherlands Department of Mathematics: Analysis Logic and Discrete Mathematics Ghent University Belgium Department of Mathematics and Data Science Vrije Universiteit Brussel Belgium
Spectral hypergraph theory mainly concerns using hypergraph spectra to obtain structural information about the given hypergraphs. The study of cospectral hypergraphs is important since it reveals which hypergraph prop...
来源: 评论
Non-convergence to global minimizers in data driven supervised deep learning: Adam and stochastic gradient descent optimization provably fail to converge to global minimizers in the training of deep neural networks with ReLU activation
arXiv
收藏 引用
arXiv 2024年
作者: Hannibal, Sonja Jentzen, Arnulf Thang, Do Minh Applied Mathematics: Institute for Analysis and Numerics Faculty of Mathematics and Computer Science University of Münster Germany School of Data Science Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen [CUHK-Shenzhen China School of Data Science The Chinese University of Hong Kong Shenzhen [CUHK-Shenzhen China Department of Probability and Statistic Institute of Mathematics Vietnam Academy of Science and Technology Viet Nam
Deep learning (DL) methods – consisting of a class of deep neural networks (DNNs) trained by a stochastic gradient descent (SGD) optimization method – are nowadays key tools to solve data driven supervised learning ... 详细信息
来源: 评论
The necessity of depth for artificial neural networks to approximate certain classes of smooth and bounded functions without the curse of dimensionality
arXiv
收藏 引用
arXiv 2023年
作者: Gonon, Lukas Graeber, Robin Jentzen, Arnulf Faculty of Natural Sciences Department of Mathematics Imperial College London United Kingdom Institute for Analysis and Numerics Faculty of Mathematics and Computer Science University of Münster Germany School of Data Science and Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen China
In this article we study high-dimensional approximation capacities of shallow and deep artificial neural networks (ANNs) with the rectified linear unit (ReLU) activation. In particular, it is a key contribution of thi... 详细信息
来源: 评论
The M-matrix group inverse problem for distance-biregular graphs
arXiv
收藏 引用
arXiv 2022年
作者: Abiad, Aida Carmona, Ángeles Encinas, Andrés M. Jiménez, María José Department of Mathematics and Computer Science Eindhoven University of Technology Netherlands Department of Mathematics: Analysis Logic and Discrete Mathematics Ghent University Belgium Department of Mathematics and Data Science Vrije Universiteit Brussel Belgium Department of Mathematics Polytechnic University of Catalonia Spain
In this paper we provide the group inverse of the combinatorial Laplacian matrix of distance–biregular graphs using the so–called equilibrium measures for sets obtained by deleting a vertex. We also show that the tw... 详细信息
来源: 评论
Set-Valued Markov Chain Dependability Model with Uncertain data
Set-Valued Markov Chain Dependability Model with Uncertain D...
收藏 引用
IEEE International Conference on Dependable Systems, Services and Technologies (DESSERT)
作者: Leonid Lyubchyk Yurii Zaitsev Galyna Grinberg Olga Kostyuk Department of Computer Mathematics and Data Analysis National Technical University “KhPI” Kharkiv Ukraine Department of Markening National Technical University “KhPI” Kharkiv Ukraine
The development of Markov model approach for probabilistic analysis of dependable systems with uncertain data is considered. Further development of Markov models with interval description of uncertain parameters based... 详细信息
来源: 评论
An Overview on Machine Learning Methods for Partial Differential Equations: From Physics Informed Neural Networks to Deep Operator Learning
arXiv
收藏 引用
arXiv 2024年
作者: Gonon, Lukas Jentzen, Arnulf Kuckuck, Benno Liang, Siyu Riekert, Adrian von Wurstemberger, Philippe Department of Mathematics Imperial College London United Kingdom School of Data Science Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen [CUHK-Shenzhen China Applied Mathematics: Institute for Analysis and Numerics Faculty of Mathematics and Computer Science University of Münster Germany School of Mathematics and Statistics Nanjing University of Science and Technology Nanjing China School of Data Science The Chinese University of Hong Kong Shenzhen [CUHK-Shenzhen China Mathematisches Institut Ludwig-Maximilians-Universität München Germany Risklab Department of Mathematics ETH Zurich Switzerland
The approximation of solutions of partial differential equations (PDEs) with numerical algorithms is a central topic in applied mathematics. For many decades, various types of methods for this purpose have been develo... 详细信息
来源: 评论
Machine Learning-Based Failure Rate Identification for Predictive Maintenance in Industry 4.0
Machine Learning-Based Failure Rate Identification for Predi...
收藏 引用
IEEE International Conference on Dependable Systems, Services and Technologies (DESSERT)
作者: Leonid Lyubchyk Olena Akhiiezer Galyna Grinberg Klym Yamkovyi Department of Computer Mathematics and Data Analysis National Technical University “KhPI” Kharkiv Ukraine Department of Markening National Technical University “KhPI” Kharkiv Ukraine
The problem of regression model of failure rate building using datasets containing a number of failures of recoverable systems at certain time intervals and measurements of influencing technological and operational fa... 详细信息
来源: 评论
Improving hp-Variational Physics-Informed Neural Networks for Steady-State Convection-Dominated Problems
arXiv
收藏 引用
arXiv 2024年
作者: Anandh, Thivin Ghose, Divij Jain, Himanshu Sunkad, Pratham Ganesan, Sashikumaar John, Volker Department of Computational and Data Sciences Indian Institute of Science Karnataka Bangalore India Department of Mechanical Engineering Indian Institute of Technology Tamil Nadu Madras India Weierstrass Institute for Applied Analysis and Stochastics Berlin Germany Department of Mathematics and Computer Science Freie University Berlin Germany
This paper proposes and studies two extensions of applying hp-variational physics-informed neural networks, more precisely the FastVPINNs framework, to convection-dominated convection-diffusion-reaction problems. Firs... 详细信息
来源: 评论