作者:
Dutt, NikilRegazzoni, Carlo S.Rinner, BernhardYao, XinNikil Dutt (Fellow
IEEE) received the Ph.D. degree from the University of Illinois at Urbana–Champaign Champaign IL USA in 1989.""He is currently a Distinguished Professor of computer science (CS) cognitive sciences and electrical engineering and computer sciences (EECS) with the University of California at Irvine Irvine CA USA. He is a coauthor of seven books. His research interests include embedded systems electronic design automation (EDA) computer architecture distributed systems healthcare Internet of Things (IoT) and brain-inspired architectures and computing.""Dr. Dutt is a Fellow of ACM. He was a recipient of the IFIP Silver Core Award. He has received numerous best paper awards. He serves as the Steering Committee Chair of the IEEE/ACM Embedded Systems Week (ESWEEK). He is also on the steering organizing and program committees of several premier EDA and embedded system design conferences and workshops. He has served on the Editorial Boards for the IEEE Transactions on Very Large Scale Integration (VLSI) Systems and the ACM Transactions on Embedded Computing Systems and also previously served as the Editor-in-Chief (EiC) for the ACM Transactions on Design Automation of Electronic Systems. He served on the Advisory Boards of the IEEE Embedded Systems Letters the ACM Special Interest Group on Embedded Systems the ACM Special Interest Group on Design Automationt and the ACM Transactions on Embedded Computing Systems. Carlo S. Regazzoni (Senior Member
IEEE) received the M.S. and Ph.D. degrees in electronic and telecommunications engineering from the University of Genoa Genoa Italy in 1987 and 1992 respectively.""He is currently a Full Professor of cognitive telecommunications systems with the Department of Electrical Electronics and Telecommunication Engineering and Naval Architecture (DITEN) University of Genoa and a Co-Ordinator of the Joint Doctorate on Interactive and Cognitive Environments (JDICE) international Ph.D. course started initially as EU Erasmus Mundus Project and
Autonomous systems are able to make decisions and potentially take actions without direct human intervention, which requires some knowledge about the system and its environment as well as goal-oriented reasoning. In c...
详细信息
Autonomous systems are able to make decisions and potentially take actions without direct human intervention, which requires some knowledge about the system and its environment as well as goal-oriented reasoning. In computersystems, one can derive such behavior from the concept of a rational agent with autonomy (“control over its own actions”), reactivity (“react to events from the environment”), proactivity (“act on its own initiative”), and sociality (“interact with other agents”) as fundamental properties \n[1]\n. Autonomous systems will undoubtedly pervade into our everyday lives, and we will find them in a variety of domains and applications including robotics, transportation, health care, communications, and entertainment to name a few. \nThe articles in this month’s special issue cover concepts and fundamentals, architectures and techniques, and applications and case studies in the exciting area of self-awareness in autonomous systems.
Cloud computing is a suitable solution for professionals, companies, and institutions that need to have access to computational resources on demand. Clouds rely on proper management to provide such computational resou...
详细信息
Cloud computing is a suitable solution for professionals, companies, and institutions that need to have access to computational resources on demand. Clouds rely on proper management to provide such computational resources with adequate quality of service, which is established by Service Level Agreements (SLAs), to customers. In this context, cloud monitoring is a critical function to achieve such proper management. Cloud monitoring systems have to accomplish requirements to perform its functions properly, and currently, there are plenty of requirements which includes: timeliness, adaptability, comprehensiveness, and scalability. However, such requirements usually have mutual influence, which is positive or negative, among them-selves, and it has prevented the development of complete cloud monitoring solutions. This paper presents a mathematical model to predict the mutual influence between timeliness and scalability, which is a step forward in cloud monitoring because it paves the way for the development of complete monitoring solutions. It complements our previous work that identified the monitoring parameters (e.g., frequency sampling, amount of monitoring data) that influence timeliness and scalability. Evaluations present the effectiveness of the mathematical model based on a comparison of the results provided by the mathematical model and the results obtained via simulation.
暂无评论