咨询与建议

限定检索结果

文献类型

  • 16,312 篇 会议
  • 14,134 篇 期刊文献
  • 150 册 图书
  • 2 篇 专利

馆藏范围

  • 30,598 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18,999 篇 工学
    • 14,498 篇 计算机科学与技术...
    • 12,204 篇 软件工程
    • 4,323 篇 信息与通信工程
    • 2,997 篇 生物工程
    • 2,436 篇 控制科学与工程
    • 1,892 篇 生物医学工程(可授...
    • 1,851 篇 电气工程
    • 1,552 篇 光学工程
    • 1,290 篇 电子科学与技术(可...
    • 993 篇 机械工程
    • 904 篇 化学工程与技术
    • 723 篇 网络空间安全
    • 705 篇 安全科学与工程
    • 656 篇 动力工程及工程热...
    • 647 篇 交通运输工程
    • 621 篇 仪器科学与技术
  • 11,215 篇 理学
    • 6,071 篇 数学
    • 3,390 篇 生物学
    • 2,645 篇 物理学
    • 2,333 篇 统计学(可授理学、...
    • 1,074 篇 化学
    • 1,069 篇 系统科学
  • 5,521 篇 管理学
    • 2,904 篇 图书情报与档案管...
    • 2,878 篇 管理科学与工程(可...
    • 1,462 篇 工商管理
  • 1,828 篇 医学
    • 1,537 篇 临床医学
    • 1,393 篇 基础医学(可授医学...
    • 815 篇 药学(可授医学、理...
    • 786 篇 公共卫生与预防医...
  • 1,024 篇 法学
    • 870 篇 社会学
  • 544 篇 经济学
  • 416 篇 农学
  • 323 篇 教育学
  • 97 篇 文学
  • 46 篇 军事学
  • 38 篇 艺术学
  • 6 篇 历史学
  • 5 篇 哲学

主题

  • 1,019 篇 deep learning
  • 929 篇 accuracy
  • 784 篇 machine learning
  • 730 篇 training
  • 719 篇 feature extracti...
  • 580 篇 semantics
  • 575 篇 computational mo...
  • 438 篇 predictive model...
  • 435 篇 data models
  • 352 篇 convolutional ne...
  • 348 篇 internet of thin...
  • 348 篇 real-time system...
  • 337 篇 support vector m...
  • 326 篇 reinforcement le...
  • 282 篇 neural networks
  • 279 篇 image segmentati...
  • 279 篇 data mining
  • 254 篇 task analysis
  • 252 篇 optimization
  • 246 篇 deep neural netw...

机构

  • 828 篇 school of data a...
  • 428 篇 department of ph...
  • 397 篇 iccub universita...
  • 347 篇 university of ch...
  • 330 篇 college of compu...
  • 293 篇 nikhef national ...
  • 291 篇 center for high ...
  • 290 篇 imperial college...
  • 289 篇 school of physic...
  • 287 篇 department of ph...
  • 287 篇 physik-institut ...
  • 285 篇 cavendish labora...
  • 285 篇 stfc rutherford ...
  • 285 篇 school of physic...
  • 285 篇 physikalisches i...
  • 284 篇 institute of par...
  • 283 篇 oliver lodge lab...
  • 283 篇 school of physic...
  • 281 篇 horia hulubei na...
  • 280 篇 henryk niewodnic...

作者

  • 243 篇 barter w.
  • 241 篇 beiter a.
  • 224 篇 bellee v.
  • 218 篇 casse g.
  • 214 篇 bowcock t.j.v.
  • 196 篇 brundu d.
  • 187 篇 blake t.
  • 171 篇 niyato dusit
  • 156 篇 baker s.
  • 152 篇 borsato m.
  • 149 篇 betancourt c.
  • 146 篇 boettcher t.
  • 146 篇 albrecht j.
  • 144 篇 amato s.
  • 144 篇 cattaneo m.
  • 144 篇 amhis y.
  • 144 篇 akar s.
  • 143 篇 a. jawahery
  • 143 篇 m. gandelman
  • 143 篇 t. gershon

语言

  • 24,737 篇 英文
  • 5,728 篇 其他
  • 224 篇 中文
  • 7 篇 斯洛文尼亚文
  • 6 篇 法文
  • 4 篇 德文
  • 1 篇 日文
  • 1 篇 朝鲜文
  • 1 篇 俄文
  • 1 篇 土耳其文
检索条件"机构=Computer Science/Data Science"
30598 条 记 录,以下是281-290 订阅
排序:
Offline Behavior Distillation  38
Offline Behavior Distillation
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Lei, Shiye Zhang, Sen Tao, Dacheng School of Computer Science The University of Sydney Australia College of Computing & Data Science Nanyang Technological University Singapore
Massive reinforcement learning (RL) data are typically collected to train policies offline without the need for interactions, but the large data volume can cause training inefficiencies. To tackle this issue, we formu...
来源: 评论
Enhancing Automated COVID Diagnosis from Chest X-rays using Convolutional Neural Networks and Transfer Learning  5
Enhancing Automated COVID Diagnosis from Chest X-rays using ...
收藏 引用
5th International Conference on Advancements in Computational sciences, ICACS 2024
作者: Bukhari, Muhammad Abdullah Shah Siddiqui, Muhammad Ahmad Khalique, Sarmad Bukhari, Faisal Iqbal, Waheed University of the Punjab Department of Computer Science Lahore Pakistan University of the Punjab Department of Data Science Lahore Pakistan
We propose an approach for the early detection of COVID-19 and other related lung diseases using artificial intelligence (AI) and deep learning-based methods. The proposed approach involves utilizing transfer learning... 详细信息
来源: 评论
Peer Collaboration in DBLP Using Graph Convolutional Network
收藏 引用
SN computer science 2025年 第1期6卷 1-7页
作者: Kumar, Chintoo Dar, Showkat Ahmad Batchu, Charishma Singamaneni, Kundan Sai Panguluri, Venkata Lakshmi Alekhya Department of Artificial Intelligence and Data Science GITAM Karnataka Bengaluru 562163 India Department of Computer Science and Engineering GITAM Karnataka Bengaluru 562163 India
The increasing popularity of Graph-based neural network architectures plays a pivotal role in providing promising results in applications, viz., Friendship networks, Co-authorship networks, Product recommendations, et... 详细信息
来源: 评论
Lay CO:Achieving Least Lossy Accuracy for Most Efficient RRAM-Based Deep Neural Network Accelerator via Layer-Centric Co-Optimization
收藏 引用
计算机科学技术学报(英文版) 2023年 第2期38卷 328-347页
作者: Shao-Feng Zhao Fang Wang Bo Liu Dan Feng Yang Liu Wuhan National Laboratory for Optoelectronics Huazhong University of Science and TechnologyWuhan 430074China School of Computer Science and Technology Huazhong University of Science and TechnologyWuhan 430074China Cloud Computing and Big Data Institute Henan University of Economics and LawZhengzhou 450001China Wuhan National Laboratory for Optoelectronics Huazhong University of Science and TechnologyWuhan 430074China School of Computer Science and Technology Huazhong University of Science and TechnologyWuhan 430074China Research Institute of Huazhong University of Science and Technology in Shenzhen Shenzhen 518057China School of Computer and Artificial Intelligence Zhengzhou UniversityZhengzhou 450001China Wuhan National Laboratory for Optoelectronics Huazhong University of Science and TechnologyWuhan 430074China School of Computer Science and Technology Huazhong University of Science and TechnologyWuhan 430074China Cloud Computing and Big Data Institute Henan University of Economics and LawZhengzhou 450001China
Resistive random access memory(RRAM)enables the functionality of operating massively parallel dot prod-ucts and ***-based accelerator is such an effective approach to bridging the gap between Internet of Things device... 详细信息
来源: 评论
Enhance Transferability of Adversarial Examples with Model Architecture  48
Enhance Transferability of Adversarial Examples with Model A...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Fan, Mingyuan Guo, Wenzhong Ying, Zuobin Liu, Ximeng Fuzhou University College of Computer and Data Science China City University of Macau Faculty of Data Science China
Transferability of adversarial examples is of critical importance to launch black-box adversarial attacks, where attackers are only allowed to access the output of the target model. However, under such a challenging b... 详细信息
来源: 评论
Dynamic Backup Sharing Scheme of Service Function Chains in NFV
收藏 引用
China Communications 2022年 第5期19卷 178-190页
作者: Dong Zhang Zhifan Zheng Xiang Lin Xiang Chen Chunming Wu College of Computer and Data Science Fuzhou UniversityFuzhou 350108China College of Computer Science and Technology Zhejiang UniversityHangzhou 310058China
Service function chains(SFC)mapping takes the responsibility for managing virtual network functions(VNFs).In SFC mapping,existing solutions duplicate VNFs with redundant instances to provide high availability in respo... 详细信息
来源: 评论
Deep learning-based method for detection of copy-move forgery in videos
收藏 引用
Neural Computing and Applications 2025年 第14期37卷 8451-8464页
作者: Elbarougy, Reda Abdelfatah, Osama Behery, G.M. El-Badry, Noha M. Department of Artificial Intelligence and Data Science College of Computer Science and Engineering University of Ha’il Ha’il81481 Saudi Arabia Department of Information Technology Faculty of Computer and Artificial Intelligence Damietta University New Damietta Kafr Saad Egypt Department of Computer Science Faculty of Computer and Artificial Intelligence Damietta University New Damietta Kafr Saad Egypt Department of Mathematics Faculty of Science Damietta University New Damietta Kafr Saad Egypt
Video forgery is one of the most serious problems affecting the credibility and reliability of video content. Therefore, detecting video forgery presents a major challenge for researchers due to the diversity of forge... 详细信息
来源: 评论
RLHR: A Framework for Driving Dynamically Adaptable Questionnaires and Profiling People Using Reinforcement Learning
RLHR: A Framework for Driving Dynamically Adaptable Question...
收藏 引用
19th International Conference on Software Technologies, ICSOFT 2024
作者: Paduraru, Ciprian Patilea, Catalina Camelia Stefanescu, Alin Department of Computer Science University of Bucharest Romania Institute for Logic and Data Science Romania
In today’s corporate landscape, the creation of questionnaires, surveys or evaluation forms for employees is a widespread practice. These tools are regularly used to check various aspects such as motivation, opportun... 详细信息
来源: 评论
ARCHER:a ReRAM-based accelerator for compressed recommendation systems
收藏 引用
Frontiers of computer science 2024年 第5期18卷 147-160页
作者: Xinyang SHEN Xiaofei LIAO Long ZHENG Yu HUANG Dan CHEN Hai JIN National Engineering Research Center for Big Data Technology and System Services Computing Technology and System LabClusters and Grid Computing LabSchool of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan 430074China
Modern recommendation systems are widely used in modern data *** random and sparse embedding lookup operations are the main performance bottleneck for processing recommendation systems on traditional platforms as they... 详细信息
来源: 评论
Joint Internal Multi-Interest Exploration and External Domain Alignment for Cross Domain Sequential Recommendation  23
Joint Internal Multi-Interest Exploration and External Domai...
收藏 引用
32nd ACM World Wide Web Conference, WWW 2023
作者: Liu, Weiming Zheng, Xiaolin Chen, Chaochao Su, Jiajie Liao, Xinting Hu, Mengling Tan, Yanchao College of Computer Science Zhejiang University China College of Computer and Data Science Fuzhou University China
Sequential Cross-Domain Recommendation (CDR) has been popularly studied to utilize different domain knowledge and users' historical behaviors for the next-item prediction. In this paper, we focus on the cross-doma... 详细信息
来源: 评论