Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network *** natural disasters,timely delivery of first aid supplies is *** UAVs face risks such as crashing into birds...
详细信息
Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network *** natural disasters,timely delivery of first aid supplies is *** UAVs face risks such as crashing into birds or unexpected *** systems with parachutes risk dispersing payloads away from target *** objective here is to use multiple UAVs to distribute payloads cooperatively to assigned *** civil defense department must balance coverage,accurate landing,and flight safety while considering battery power and *** Q-network(DQN)models are commonly used in multi-UAV path planning to effectively represent the surroundings and action *** strategies focused on advanced DQNs for UAV path planning in different configurations,but rarely addressed non-cooperative scenarios and disaster *** paper introduces a new DQN framework to tackle challenges in disaster *** considers unforeseen structures and birds that could cause UAV crashes and assumes urgent landing zones and winch-based airdrop systems for precise delivery and return.A new DQN model is developed,which incorporates the battery life,safe flying distance between UAVs,and remaining delivery points to encode surrounding hazards into the state space and ***,a unique reward system is created to improve UAV action sequences for better delivery coverage and safe *** experimental results demonstrate that multi-UAV first aid delivery in disaster environments can achieve advanced performance.
With the spread of open-ear earphones that do not cover the ear, new listening experiences are being proposed that combines real ambient sounds with virtual sounds heard from earphones. At NTT, we call this merging of...
详细信息
data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er soun...
详细信息
data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er sound race ***,this constraint-based approach has serious limitations on helping programmers analyze and understand data ***,it may report a large number of false positives due to the unrecognized dataflow propa-gation of the ***,it recommends a wide range of thread context switches to schedule the reported race(in-cluding the false one)whenever this race is exposed during the constraint-solving *** ad hoc recommendation imposes too many context switches,which complicates the data race *** address these two limitations in the state-of-the-art constraint-based race detection,this paper proposes DFTracker,an improved constraint-based race detec-tor to recommend each data race with minimal thread context ***,we reduce the false positives by ana-lyzing and tracking the dataflow in the *** this means,DFTracker thus reduces the unnecessary analysis of false race *** further propose a novel algorithm to recommend an effective race schedule with minimal thread con-text switches for each data *** experimental results on the real applications demonstrate that 1)without removing any true data race,DFTracker effectively prunes false positives by 68%in comparison with the state-of-the-art constraint-based race detector;2)DFTracker recommends as low as 2.6-8.3(4.7 on average)thread context switches per data race in the real world,which is 81.6%fewer context switches per data race than the state-of-the-art constraint based race ***,DFTracker can be used as an effective tool to understand the data race for programmers.
The development of the Internet of Things (IoT) has made the traditional Consumer Electronics (CE) evolve into a next-generation CE with many intelligent application which generates a large number of computing-intensi...
详细信息
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task...
详细信息
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task requirements such as latency in task execution, computation costs, etc. So, selecting such a fog node that meets task requirements is a crucial challenge. To choose an optimal fog node, access to each node's resource availability information is essential. Existing approaches often assume state availability or depend on a subset of state information to design mechanisms tailored to different task requirements. In this paper, OptiFog: a cluster-based fog computing architecture for acquiring the state information followed by optimal fog node selection and task offloading mechanism is proposed. Additionally, a continuous time Markov chain based stochastic model for predicting the resource availability on fog nodes is proposed. This model prevents the need to frequently synchronize the resource availability status of fog nodes, and allows to maintain an updated state information. Extensive simulation results show that OptiFog lowers task execution latency considerably, and schedules almost all the tasks at the fog layer compared to the existing state-of-the-art. IEEE
On July 18, 2021, the PKU-DAIR Lab1)(data and Intelligence Research Lab at Peking University) openly released the source code of Hetu, a highly efficient and easy-to-use distributed deep learning(DL) framework. Hetu i...
On July 18, 2021, the PKU-DAIR Lab1)(data and Intelligence Research Lab at Peking University) openly released the source code of Hetu, a highly efficient and easy-to-use distributed deep learning(DL) framework. Hetu is the first distributed DL system developed by academic groups in Chinese universities, and takes into account both high availability in industry and innovation in academia. Through independent research and development, Hetu is completely decoupled from the existing DL systems and has unique characteristics. The public release of the Hetu system will help researchers and practitioners to carry out frontier MLSys(machine learning system) research and promote innovation and industrial upgrading.
Human activity recognition (HAR) techniques pick out and interpret human behaviors and actions by analyzing data gathered from various sensor devices. HAR aims to recognize and automatically categorize human activitie...
详细信息
Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personalinformation, such as age, gender, occupation, and education, based on various linguistic features, e.g....
详细信息
Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personalinformation, such as age, gender, occupation, and education, based on various linguistic features, e.g., stylistic,semantic, and syntactic. The importance of AP lies in various fields, including forensics, security, medicine, andmarketing. In previous studies, many works have been done using different languages, e.g., English, Arabic, French,***, the research on RomanUrdu is not up to the ***, this study focuses on detecting the author’sage and gender based on Roman Urdu text messages. The dataset used in this study is Fire’18-MaponSMS. Thisstudy proposed an ensemble model based on AdaBoostM1 and Random Forest (AMBRF) for AP using multiplelinguistic features that are stylistic, character-based, word-based, and sentence-based. The proposed model iscontrasted with several of the well-known models fromthe literature, including J48-Decision Tree (J48),Na飗e Bays(NB), K Nearest Neighbor (KNN), and Composite Hypercube on Random Projection (CHIRP), NB-Updatable,RF, and AdaboostM1. The overall outcome shows the better performance of the proposed AdaboostM1 withRandom Forest (ABMRF) with an accuracy of 54.2857% for age prediction and 71.1429% for gender predictioncalculated on stylistic features. Regarding word-based features, age and gender were considered in 50.5714% and60%, respectively. On the other hand, KNN and CHIRP show the weakest performance using all the linguisticfeatures for age and gender prediction.
Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target ***,a challenging issue is how to deploy these mob...
详细信息
Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target ***,a challenging issue is how to deploy these mobile robotic agents to provide network services with good quality for more users,while considering the mobility of on-ground *** this paper,to solve this issue,we decouple the coverage problem into the vertical dimension and the horizontal dimension without any loss of optimization and introduce the network coverage model with maximum coverage ***,we propose a hybrid deployment algorithm based on the improved quick artificial bee *** algorithm is composed of a centralized deployment algorithm and a distributed *** proposed deployment algorithm deploy a given number of mobile robotic agents to provide network services for the on-ground devices that are independent and identically *** results have demonstrated that the proposed algorithm deploys agents appropriately to cover more ground area and provide better coverage uniformity.
Generating cover photos from story text is a non trivial challenge to solve. Existing approaches focus on generating only images from given text prompt. To the best of our knowledge, non of these approaches focus on g...
详细信息
暂无评论