咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 272 篇 会议
  • 6 册 图书

馆藏范围

  • 737 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 466 篇 工学
    • 315 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 89 篇 生物工程
    • 79 篇 信息与通信工程
    • 72 篇 生物医学工程(可授...
    • 67 篇 电气工程
    • 62 篇 控制科学与工程
    • 55 篇 电子科学与技术(可...
    • 48 篇 光学工程
    • 31 篇 化学工程与技术
    • 23 篇 仪器科学与技术
    • 23 篇 材料科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 18 篇 机械工程
  • 365 篇 理学
    • 161 篇 数学
    • 115 篇 生物学
    • 96 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 42 篇 化学
    • 39 篇 系统科学
  • 139 篇 管理学
    • 76 篇 管理科学与工程(可...
    • 59 篇 图书情报与档案管...
    • 44 篇 工商管理
    • 17 篇 公共管理
  • 88 篇 医学
    • 67 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 46 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 26 篇 农学
  • 24 篇 法学
    • 22 篇 社会学
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 7 篇 教育学
  • 2 篇 文学

主题

  • 28 篇 machine learning
  • 23 篇 deep learning
  • 17 篇 training
  • 13 篇 computational mo...
  • 13 篇 predictive model...
  • 13 篇 semantics
  • 13 篇 accuracy
  • 12 篇 generative adver...
  • 12 篇 real-time system...
  • 12 篇 feature extracti...
  • 11 篇 optimization
  • 11 篇 decision making
  • 11 篇 forecasting
  • 8 篇 covid-19
  • 8 篇 adaptation model...
  • 7 篇 scalability
  • 7 篇 resource managem...
  • 7 篇 data mining
  • 7 篇 artificial intel...
  • 7 篇 data models

机构

  • 9 篇 applied mathemat...
  • 9 篇 computational an...
  • 8 篇 school of data a...
  • 8 篇 computational an...
  • 8 篇 department of da...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 srm institute of...
  • 7 篇 department of ma...
  • 7 篇 department of co...
  • 7 篇 school of data s...
  • 7 篇 shenzhen researc...
  • 6 篇 department of bi...
  • 6 篇 institute of com...
  • 6 篇 information stor...
  • 6 篇 department of co...
  • 6 篇 computer network...
  • 6 篇 faculty of scien...
  • 6 篇 department of me...
  • 6 篇 zhejiang bioinfo...

作者

  • 40 篇 masuda naoki
  • 13 篇 herrera-viedma e...
  • 11 篇 shoeibi afshin
  • 10 篇 naoki masuda
  • 10 篇 alizadehsani roo...
  • 10 篇 jasra ajay
  • 9 篇 mani deepak chou...
  • 8 篇 akshya j.
  • 8 篇 nahavandi saeid
  • 8 篇 huang ming-chun
  • 8 篇 islam ashraful
  • 7 篇 choudhry mani de...
  • 7 篇 m. sundarrajan
  • 6 篇 mitra pabitra
  • 6 篇 acharya u. rajen...
  • 6 篇 hussain sadiq
  • 6 篇 jafari mahboobeh
  • 6 篇 khosravi abbas
  • 6 篇 xu wenyao
  • 5 篇 james s. plank

语言

  • 659 篇 英文
  • 73 篇 其他
  • 6 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Computer Science & Engineering Computational and Data-enabled Science & Engineering"
737 条 记 录,以下是421-430 订阅
排序:
Finite-size effects on the convergence time in continuous-opinion dynamics
arXiv
收藏 引用
arXiv 2021年
作者: Jo, Hang-Hyun Masuda, Naoki Department of Physics The Catholic University of Korea Bucheon14662 Korea Republic of Department of Mathematics State University of New York at Buffalo 14260-2900 United States Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo 14260-5030 United States
We study finite-size effects on the convergence time in a continuous-opinion dynamics model. In the model, each individual's opinion is represented by a real number on a finite interval, e.g., [0;1], and a uniform... 详细信息
来源: 评论
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jinzhe Zhang, Duo Peng, Anyang Zhang, Xiangyu He, Sensen Wang, Yan Liu, Xinzijian Bi, Hangrui Li, Yifan Cai, Chun Zhang, Chengqian Du, Yiming Zhu, Jia-Xin Mo, Pinghui Huang, Zhengtao Zeng, Qiyu Shi, Shaochen Qin, Xuejian Yu, Zhaoxi Luo, Chenxing Ding, Ye Liu, Yun-Pei Shi, Ruosong Wang, Zhenyu Bore, Sigbjørn Løland Chang, Junhan Deng, Zhe Ding, Zhaohan Han, Siyuan Jiang, Wanrun Ke, Guolin Liu, Zhaoqing Lu, Denghui Muraoka, Koki Oliaei, Hananeh Singh, Anurag Kumar Que, Haohui Xu, Weihong Xu, Zhangmancang Zhuang, Yong-Bin Dai, Jiayu Giese, Timothy J. Jia, Weile Xu, Ben York, Darrin M. Zhang, Linfeng Wang, Han School of Artificial Intelligence and Data Science Unversity of Science and Technology of China Hefei China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China Department of Computer Science University of Toronto TorontoON Canada Department of Chemistry Princeton University PrincetonNJ08540 United States University of Chinese Academy of Sciences Beijing100871 China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China College of Integrated Circuits Hunan University Changsha410082 China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center for Smart Materials and Device Integration School of Material Science and Engineering Wuhan University of Technology Wuhan430070 China College of Science National University of Defense Technology Changsha410073 China Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha410073 China ByteDance Research Beijing100098 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Department of Geosciences Princeton University PrincetonNJ08544 United States Department of Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States IKKEM Fujian Xiamen361005 China Graduate
In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations an... 详细信息
来源: 评论
A Mixing Time Lower Bound for a Simplified Version of BART
arXiv
收藏 引用
arXiv 2022年
作者: Ronen, Omer Saarinen, Theo Tan, Yan Shuo Duncan, James Yu, Bin Department of Statistics UC Berkeley United States Department of Electrical Engineering and Computer Sciences UC Berkeley United States Center for Computational Biology UC Berkeley United States Department of Statistics and Data Science National University of Singapore Singapore Microsoft Research United States Group in Biostatistics UC Berkeley United States
Bayesian Additive Regression Trees (BART) is a popular Bayesian non-parametric regression algorithm. The posterior is a distribution over sums of decision trees, and predictions are made by averaging approximate sampl... 详细信息
来源: 评论
Gillespie algorithms for stochastic multiagent dynamics in populations and networks
arXiv
收藏 引用
arXiv 2021年
作者: Masuda, Naoki Vestergaard, Christian L. Department of Mathematics State University of New York at Buffalo NY United States Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo NY United States Decision and Bayesian Computation Department of Neuroscience Cnrs Umr 3571 Department of Computational Biology Cnrs Usr 3756 Institut Pasteur Paris France
Many multiagent dynamics, including various collective dynamics occurring on networks, can be modeled as a stochastic process in which the agents in the system change their state over time in interaction with each oth... 详细信息
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论
K-Core Decomposition on Super Large Graphs with Limited Resources
arXiv
收藏 引用
arXiv 2021年
作者: Gao, Shicheng Xu, Jie Li, Xiaosen Fu, Fangcheng Zhang, Wentao Ouyang, Wen Tao, Yangyu Cui, Bin School of Electronic and Computer Engineering Shenzhen Graduate School Peking University China Tencent Inc. China Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications China School of CS Key Laboratory of High Confidence Software Technologies Peking University China Institute of Computational Social Science Peking University Qingdao China
K-core decomposition is a commonly used metric to analyze graph structure or study the relative importance of nodes in complex graphs. Recent years have seen rapid growth in the scale of the graph, especially in indus... 详细信息
来源: 评论
DeepCare: Deep Learning-Based Smart Healthcare Framework using 5G Assisted Network Slicing
DeepCare: Deep Learning-Based Smart Healthcare Framework usi...
收藏 引用
International Symposium on Advanced Networks and Telecommunication Systems (ANTS)
作者: Deborsi Basu Vikram Krishnakumar Uttam Ghosh Raja Datta G. S. Sanyal School of Telecommunications Indian Institute of Technology Kharagpur India Dept. of Electronics and Communication Engineering SASTRA Deemed Univ. Thanjavur Tamil Nadu India Dept. of Data Science and Computer Science School of Applied Computational Sciences MMC USA Dept. of Electronics and Electrical Comm. Engg. Indian Institute of Technology Kharagpur India
5G and beyond communication networks require satisfying very low latency standards, high reliability, high-speed user connectivity, more security, improved capacity and better service demands. Augmenting such a wide r... 详细信息
来源: 评论
Evaluation of tree based regression over multiple linear regression for non-normally distributed data in battery performance
arXiv
收藏 引用
arXiv 2021年
作者: Chowdhury, Shovan Lin, Yuxiao Liawc, Boryann Kerby, Leslie Department of Mechanical Engineering Idaho State University PocatelloID83209 United States Materials Science and Engineering Energy and Environment Science and Technology Idaho National Laboratory Idaho FallsID83415 United States Energy Storage and Advanced Transportation Energy and Environment Science and Technology Idaho National Laboratory Idaho FallsID83415 United States Computational Engineering and Data Science Laboratory Department of Computer Science Idaho State University PocatelloID83209 United States
Battery performance datasets are typically non-normal and multicollinear. Extrapolating such datasets for model predictions needs attention to such characteristics. This study explores the impact of data normality in ... 详细信息
来源: 评论
A Modified Clustering Using Representatives to Enhance and Optimize Tracking and Monitoring of Maritime Traffic in Real-time Using Automatic Identification System data
A Modified Clustering Using Representatives to Enhance and O...
收藏 引用
International Conference on computational science and computational Intelligence (CSCI)
作者: Cheronika Manyfield-Donald Tor A. Kwembe Jing-Ru C. Cheng Computational Data-Enabled Science and Engineering Jackson State University Jackson MS USA Department of Mathematics and Statistical Sciences Jackson State University Jackson MS USA Information Technology Lab. Engineer Research and Development Center U.S. Army Corps of Engineers Vicksburg MS USA
In this paper, we introduce a modification of the Clustering Using Representatives (CURE) algorithm to enhance and optimize the tracking and monitoring of maritime traffic in real-time using the Automatic Identificati... 详细信息
来源: 评论
End-to-end AI Framework for Interpretable Prediction of Molecular and Crystal Properties
arXiv
收藏 引用
arXiv 2022年
作者: Park, Hyun Zhu, Ruijie Huerta, E.A. Chaudhuri, Santanu Tajkhorshid, Emad Cooper, Donny Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Materials Science and Engineering Northwestern University EvanstonIL60208 United States Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Department of Computer Science The University of Chicago ChicagoIL60637 United States Department of Physics University of Illinois at Urbana-Champaign UrbanaIL61801 United States Multiscale Materials and Manufacturing Lab University of Illinois Chicago ChicagoIL60607 United States Department of Biochemistry University of Illinois at Urbana-Champaign UrbanaIL61801 United States Center for Biophysics and Quantitative Biology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Computational Science and Engineering Data Science and AI Department TotalEnergies EP Research & Technology USA LLC HoustonTX77002 United States
We introduce an end-to-end computational framework that allows for hyperparameter optimization using the DeepHyper library, accelerated model training, and interpretable AI inference. The framework is based on state-o... 详细信息
来源: 评论