咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 272 篇 会议
  • 6 册 图书

馆藏范围

  • 737 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 466 篇 工学
    • 315 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 89 篇 生物工程
    • 79 篇 信息与通信工程
    • 72 篇 生物医学工程(可授...
    • 67 篇 电气工程
    • 62 篇 控制科学与工程
    • 55 篇 电子科学与技术(可...
    • 48 篇 光学工程
    • 31 篇 化学工程与技术
    • 23 篇 仪器科学与技术
    • 23 篇 材料科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 18 篇 机械工程
  • 365 篇 理学
    • 161 篇 数学
    • 115 篇 生物学
    • 96 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 42 篇 化学
    • 39 篇 系统科学
  • 139 篇 管理学
    • 76 篇 管理科学与工程(可...
    • 59 篇 图书情报与档案管...
    • 44 篇 工商管理
    • 17 篇 公共管理
  • 88 篇 医学
    • 67 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 46 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 26 篇 农学
  • 24 篇 法学
    • 22 篇 社会学
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 7 篇 教育学
  • 2 篇 文学

主题

  • 28 篇 machine learning
  • 23 篇 deep learning
  • 17 篇 training
  • 13 篇 computational mo...
  • 13 篇 predictive model...
  • 13 篇 semantics
  • 13 篇 accuracy
  • 12 篇 generative adver...
  • 12 篇 real-time system...
  • 12 篇 feature extracti...
  • 11 篇 optimization
  • 11 篇 decision making
  • 11 篇 forecasting
  • 8 篇 covid-19
  • 8 篇 adaptation model...
  • 7 篇 scalability
  • 7 篇 resource managem...
  • 7 篇 data mining
  • 7 篇 artificial intel...
  • 7 篇 data models

机构

  • 9 篇 applied mathemat...
  • 9 篇 computational an...
  • 8 篇 school of data a...
  • 8 篇 computational an...
  • 8 篇 department of da...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 srm institute of...
  • 7 篇 department of ma...
  • 7 篇 department of co...
  • 7 篇 school of data s...
  • 7 篇 shenzhen researc...
  • 6 篇 department of bi...
  • 6 篇 institute of com...
  • 6 篇 information stor...
  • 6 篇 department of co...
  • 6 篇 computer network...
  • 6 篇 faculty of scien...
  • 6 篇 department of me...
  • 6 篇 zhejiang bioinfo...

作者

  • 40 篇 masuda naoki
  • 13 篇 herrera-viedma e...
  • 11 篇 shoeibi afshin
  • 10 篇 naoki masuda
  • 10 篇 alizadehsani roo...
  • 10 篇 jasra ajay
  • 9 篇 mani deepak chou...
  • 8 篇 akshya j.
  • 8 篇 nahavandi saeid
  • 8 篇 huang ming-chun
  • 8 篇 islam ashraful
  • 7 篇 choudhry mani de...
  • 7 篇 m. sundarrajan
  • 6 篇 mitra pabitra
  • 6 篇 acharya u. rajen...
  • 6 篇 hussain sadiq
  • 6 篇 jafari mahboobeh
  • 6 篇 khosravi abbas
  • 6 篇 xu wenyao
  • 5 篇 james s. plank

语言

  • 659 篇 英文
  • 73 篇 其他
  • 6 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Computer Science & Engineering Computational and Data-enabled Science & Engineering"
737 条 记 录,以下是451-460 订阅
排序:
An Efficient and Accurate Rough Set for Feature Selection, Classification and Knowledge Representation
arXiv
收藏 引用
arXiv 2021年
作者: Xia, Shuyin Bai, Xinyu Wang, Guoyin Meng, Deyu Gao, Xinbo Chen, Zizhong Giem, Elisabeth The Chongqing Key Laboratory of Computational Intelligence Chongqing University of Telecommunications and Posts Chongqing 400065 China The National Engineering Laboratory for Algorithm and Analysis Technologiy on Big Data Xi'an Jiaotong University Xi'An710049 China The Department of Computer Science and Engineering University of California Riverside RiversideCA92521 United States
This paper present a strong data mining method based on rough set, which can realize feature selection, classification and knowledge representation at the same time. Rough set has good interpretability, and is a popul... 详细信息
来源: 评论
Parallel Planning:A New Motion Planning Framework for Autonomous Driving
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2019年 第1期6卷 236-246页
作者: Long Chen Xuemin Hu Wei Tian Hong Wang Dongpu Cao Fei-Yue Wang IEEE School of Data and Computer Science Sun Yat-sen University the School of Computer Science and Information Engineering Hubei University Institute of Measurement and Control Systems Karlsruhe Institute of Technology Department of Mechanical and Mechatronics Engineering University of Waterloo the State Key Laboratory of Management and Control for Complex Systems.Institute of Automation Chinese Academy of Sciences the Research Center for Military Computational Experiments and Parallel Systems Technology National University of Defense Technology
Motion planning is one of the most significant technologies for autonomous driving. To make motion planning models able to learn from the environment and to deal with emergency situations, a new motion planning framew... 详细信息
来源: 评论
Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review
arXiv
收藏 引用
arXiv 2022年
作者: Jafari, Mahboobeh Shoeibi, Afshin Khodatars, Marjane Ghassemi, Navid Moridian, Parisa Delfan, Niloufar Alizadehsani, Roohallah Khosravi, Abbas Ling, Sai Ho Zhang, Yu-Dong Wang, Shui-Hua Gorriz, Juan M. Rokny, Hamid Alinejad Acharya, U. Rajendra Internship in BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia Data Science and Computational Intelligence Institute University of Granada Spain Department of Medical Engineering Mashhad Branch Islamic Azad University Mashhad Iran Faculty of Computer Engineering Dept. of Artificial Intelligence Engineering K. N. Toosi University of Technology Tehran Iran Deakin University VIC3217 Australia Australia School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Department of Psychiatry University of Cambridge United Kingdom BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia UNSW Data Science Hub The University of New South Wales SydneyNSW2052 Australia Research Centre Macquarie University Sydney2109 Australia Ngee Ann Polytechnic Singapore599489 Singapore Dept. of Biomedical Informatics and Medical Engineering Asia University Taichung Taiwan Dept. of Biomedical Engineering School of Science and Technology Singapore University of Social Sciences Singapore
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such... 详细信息
来源: 评论
Differentiable Programming for Differential Equations: A Review
arXiv
收藏 引用
arXiv 2024年
作者: Sapienza, Facundo Bolibar, Jordi Schäfer, Frank Groenke, Brian Pal, Avik Boussange, Victor Heimbach, Patrick Hooker, Giles Pérez, Fernando Persson, Per-Olof Rackauckas, Christopher Department of Statistics University of California Berkeley United States Univ. Grenoble Alpes CNRS IRD G-INP Institut des Géosciences de l’Environnement Grenoble France TU Delft Department of Geosciences and Civil Engineering Delft Netherlands CSAIL Massachusetts Institute of Technology Cambridge United States TU Berlin Department of Electrical and Computer Engineering Berlin Germany Helmholtz Centre for Environmental Research Leipzig Germany Swiss Federal Research Institute WSL Birmensdorf Switzerland Oden Institute for Computational Engineering and Sciences University of Texas Austin United States Jackson School of Geosciences University of Texas Austin United States Department of Statistics and Data Science University of Pennsylvania United States Department of Mathematics University of California Berkeley United States Massachusetts Institute of Technology Cambridge United States JuliaHub Cambridge United States
The differentiable programming paradigm is a cornerstone of modern scientific computing. It refers to numerical methods for computing the gradient of a numerical model’s output. Many scientific models are based on di... 详细信息
来源: 评论
Resilient to Byzantine Attacks Finite-Sum Optimization Over Networks
Resilient to Byzantine Attacks Finite-Sum Optimization Over ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Zhaoxian Wu Qing Ling Tianyi Chen Georgios B. Giannakis School of Data and Computer Science and Guangdong Province Key Laboratory of Computational Science Sun Yat-Sen University Department of Electrical Computer and Systems Engineering Rensselaer Polytechnic Institute Department of Electrical and Computer Engineering and Digital Technology Center University of Minnesota
This contribution deals with distributed finite-sum optimization for learning over networks in the presence of malicious Byzantine attacks. To cope with such attacks, resilient approaches so far combine stochastic gra...
来源: 评论
GaNDLF-Synth: A Framework to Democratize Generative AI for (Bio)Medical Imaging
arXiv
收藏 引用
arXiv 2024年
作者: Pati, Sarthak Mazurek, Szymon Bakas, Spyridon Division of Computational Pathology Department of Pathology and Laboratory Medicine Indiana University School of Medicine IndianapolisIN United States Center for Federated Learning Indiana University School of Medicine IndianapolisIN United States Medical Working Group MLCommons San FranciscoCA United States AGH University of Krakow Academic Computer Centre Cyfronet Krakow Poland Indiana University Melvin and Bren Simon Comprehensive Cancer Center IndianapolisIN United States Department of Radiology & Imaging Sciences Indiana University School of Medicine IndianapolisIN United States Department of Biostatistics & Health Data Science Indiana University School of Medicine IndianapolisIN United States Department of Neurological Surgery Indiana University School of Medicine IndianapolisIN United States Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IndianapolisIN United States
Generative Artificial Intelligence (GenAI) is a field of AI that creates new data samples from existing ones. It utilizing deep learning to overcome the scarcity and regulatory constraints of healthcare data by genera... 详细信息
来源: 评论
${\sf DeepNC}$DeepNC: Deep Generative Network Completion
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2020年 第4期44卷 1837-1852页
作者: Cong Tran Won-Yong Shin Andreas Spitz Michael Gertz Department of Computer Science and Engineering Dankook University Yongin Republic of Korea Machine Intelligence & Data Science Laboratory Yonsei University Seoul Republic of Korea School of Mathematics and Computing (Computational Science and Engineering) Yonsei University Seoul Republic of Korea School of Computer and Communication Sciences École Polytechnique Fédérale de Lausanne Lausanne Switzerland Institute of Computer Science Heidelberg University Heidelberg Germany
Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it sta... 详细信息
来源: 评论
A newton tracking algorithm with exact linear convergence rate for decentralized consensus optimization
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Jiaojiao Ling, Qing So, Anthony Man-Cho Department of Systems Engineering and Engineering Management Chinese University of Hong Kong Hong Kong School of Data and Computer Science Guangdong Province Key Laboratory of Computational Science Sun Yat-Sen University China
This paper considers the decentralized consensus optimization problem defined over a network where each node holds a second-order differentiable local objective function. Our goal is to minimize the summation of local... 详细信息
来源: 评论
Biases in inverse Ising estimates of near-critical behavior
收藏 引用
Physical Review E 2023年 第1期108卷 014109-014109页
作者: Maximilian B. Kloucek Thomas Machon Shogo Kajimura C. Patrick Royall Naoki Masuda Francesco Turci School of Physics HH Wills Physics Laboratory University of Bristol Tyndall Avenue Bristol BS8 1TL United Kingdom Bristol Centre for Functional Nanomaterials HH Wills Physics Laboratory University of Bristol Tyndall Avenue Bristol BS8 1TL United Kingdom Faculty of Information and Human Sciences Kyoto Institute of Technology Kyoto 606-8585 Japan Gulliver UMR CNRS 7083 ESPCI Paris Université PSL 75005 Paris France Department of Mathematics State University of New York at Buffalo Buffalo New York 14260-2900 USA Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo Buffalo New York 14260-5030 USA
Inverse Ising inference allows pairwise interactions of complex binary systems to be reconstructed from empirical correlations. Typical estimators used for this inference, such as pseudo-likelihood maximization (PLM),... 详细信息
来源: 评论
BRIDGE: Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Jiageng Gu, Bowen Zhou, Ren Xie, Kevin Snyder, Doug Jiang, Yixing Carducci, Valentina Wyss, Richard Desai, Rishi J. Alsentzer, Emily Celi, Leo Anthony Rodman, Adam Schneeweiss, Sebastian Chen, Jonathan H. Romero-Brufau, Santiago Lin, Kueiyu Joshua Yang, Jie Division of Pharmacoepidemiology and Pharmacoeconomics Department of Medicine Brigham and Women’s Hospital Harvard Medical School BostonMA United States Siebel School of Computing and Data Science The Grainger College of Engineering University of Illinois Urbana-Champaign UrbanaIL United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States Department of Otorhinolaryngology – Head & Neck Surgery Mayo Clinic RochesterMN United States Department of Biostatistics Harvard T.H. Chan School of Public Health Harvard University BostonMA United States Department of Biomedical Data Science Stanford University Palo AltoCA United States Laboratory for Computational Physiology Massachusetts Institute of Technology CambridgeMA United States Division of Pulmonary Critical Care and Sleep Medicine Beth Israel Deaconess Medical Center BostonMA United States Division of General Internal Medicine Department of Medicine Beth Israel Deaconess Medical Center BostonMA United States Stanford Center for Biomedical Informatics Research Stanford University StanfordCA United States Division of Hospital Medicine Stanford University StanfordCA United States Stanford Clinical Excellence Research Center Stanford University StanfordCA United States Kempner Institute for the Study of Natural and Artificial Intelligence Harvard University MA United States Broad Institute of MIT and Harvard CambridgeMA United States Harvard Data Science Initiative Harvard University CambridgeMA United States
Large language models (LLMs) hold great promise for medical applications and are evolving rapidly, with new models being released at an accelerated pace. However, current evaluations of LLMs in clinical contexts remai... 详细信息
来源: 评论