咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 272 篇 会议
  • 6 册 图书

馆藏范围

  • 737 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 466 篇 工学
    • 315 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 89 篇 生物工程
    • 79 篇 信息与通信工程
    • 72 篇 生物医学工程(可授...
    • 67 篇 电气工程
    • 62 篇 控制科学与工程
    • 55 篇 电子科学与技术(可...
    • 48 篇 光学工程
    • 31 篇 化学工程与技术
    • 23 篇 仪器科学与技术
    • 23 篇 材料科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 18 篇 机械工程
  • 365 篇 理学
    • 161 篇 数学
    • 115 篇 生物学
    • 96 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 42 篇 化学
    • 39 篇 系统科学
  • 139 篇 管理学
    • 76 篇 管理科学与工程(可...
    • 59 篇 图书情报与档案管...
    • 44 篇 工商管理
    • 17 篇 公共管理
  • 88 篇 医学
    • 67 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 46 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 26 篇 农学
  • 24 篇 法学
    • 22 篇 社会学
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 7 篇 教育学
  • 2 篇 文学

主题

  • 28 篇 machine learning
  • 23 篇 deep learning
  • 17 篇 training
  • 13 篇 computational mo...
  • 13 篇 predictive model...
  • 13 篇 semantics
  • 13 篇 accuracy
  • 12 篇 generative adver...
  • 12 篇 real-time system...
  • 12 篇 feature extracti...
  • 11 篇 optimization
  • 11 篇 decision making
  • 11 篇 forecasting
  • 8 篇 covid-19
  • 8 篇 adaptation model...
  • 7 篇 scalability
  • 7 篇 resource managem...
  • 7 篇 data mining
  • 7 篇 artificial intel...
  • 7 篇 data models

机构

  • 9 篇 applied mathemat...
  • 9 篇 computational an...
  • 8 篇 school of data a...
  • 8 篇 computational an...
  • 8 篇 department of da...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 srm institute of...
  • 7 篇 department of ma...
  • 7 篇 department of co...
  • 7 篇 school of data s...
  • 7 篇 shenzhen researc...
  • 6 篇 department of bi...
  • 6 篇 institute of com...
  • 6 篇 information stor...
  • 6 篇 department of co...
  • 6 篇 computer network...
  • 6 篇 faculty of scien...
  • 6 篇 department of me...
  • 6 篇 zhejiang bioinfo...

作者

  • 40 篇 masuda naoki
  • 13 篇 herrera-viedma e...
  • 11 篇 shoeibi afshin
  • 10 篇 naoki masuda
  • 10 篇 alizadehsani roo...
  • 10 篇 jasra ajay
  • 9 篇 mani deepak chou...
  • 8 篇 akshya j.
  • 8 篇 nahavandi saeid
  • 8 篇 huang ming-chun
  • 8 篇 islam ashraful
  • 7 篇 choudhry mani de...
  • 7 篇 m. sundarrajan
  • 6 篇 mitra pabitra
  • 6 篇 acharya u. rajen...
  • 6 篇 hussain sadiq
  • 6 篇 jafari mahboobeh
  • 6 篇 khosravi abbas
  • 6 篇 xu wenyao
  • 5 篇 james s. plank

语言

  • 659 篇 英文
  • 73 篇 其他
  • 6 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Computer Science & Engineering Computational and Data-enabled Science & Engineering"
737 条 记 录,以下是471-480 订阅
排序:
Prediction of oral food challenge outcomes via ensemble learning
收藏 引用
Informatics in Medicine Unlocked 2023年 36卷
作者: Zhang, Justin Lee, Deborah Jungles, Kylie Shaltis, Diane Najarian, Kayvan Ravikumar, Rajan Sanders, Georgiana Gryak, Jonathan Department of Electrical and Computer Engineering University of Michigan Ann Arbor MI United States Department of Internal Medicine University of Michigan Ann Arbor MI United States Department of Pediatrics University of Michigan Ann Arbor MI United States Department of Computational Medicine and Bioinformatics University of Michigan Ann Arbor MI United States Michigan Institute for Data Science University of Michigan Ann Arbor MI United States Department of Emergency Medicine University of Michigan Ann Arbor MI United States Department of Computer Science and Engineering University of Michigan Ann Arbor MI United States Max Harry Weil Institute for Critical Care Research and Innovation University of Michigan Ann Arbor MI United States Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI United States Department of Computer Science Queens College City University of New York New York NY United States
Oral Food Challenges (OFCs) are essential to accurately diagnosing food allergy due to the limitations of existing clinical testing. However, some patients are hesitant to undergo OFCs, while those willing suffer from... 详细信息
来源: 评论
Batch reverse osmosis:a new research direction in water desalination
收藏 引用
science Bulletin 2020年 第20期65卷 1705-1708页
作者: Mingheng Li Yi Heng Jiu Luo Department of Chemical and Materials Engineering California State Polytechnic UniversityPomonaCA 91768USA School of Data and Computer Science Sun Yat-sen UniversityGuangzhou 510006China Guangdong Province Key Laboratory of Computational Science Guangzhou 510006China National Supercomputing Center in Guangzhou(NSCC-GZ) Guangzhou 510006China School of Materials Science and Engineering Sun Yat-sen UniversityGuangzhou 510275China
Water scarcity is one of the grand challenges across the world[1].Spiral wound reverse osmosis(RO)desalination is the most popular industrial technology to produce portable water from saline water *** terms of flow pa... 详细信息
来源: 评论
Preface
Lecture Notes in Networks and Systems
收藏 引用
Lecture Notes in Networks and Systems 2023年 750 LNNS卷 v-vi页
作者: Bringas, Pablo García García, Hilde Pérez de Pisón, Francisco Javier Martínez Álvarez, Francisco Martínez Lora, Alicia Troncoso Herrero, Álvaro Rolle, José Luis Calvo Quintián, Héctor Corchado, Emilio Faculty of Engineering University of Deusto Bilbao Spain School of Industrial Computer University of Leon León Spain Department of Mechanical Engineering University of La Rioja Logroño Spain Data Science and Big Data Lab Pablo de Olavide Uni versity Seville Spain Applied Computational Intelligence University of Burgos Burgos Spain Department of Industrial Engineering University of A Coruña A Coruña Spain Faculty of Science University of Salamanca Salamanca Spain
来源: 评论
Preface
Lecture Notes in Networks and Systems
收藏 引用
Lecture Notes in Networks and Systems 2023年 749 LNNS卷 v-vi页
作者: Rolle, José Luis Calvo de Pisón, Francisco Javier Martínez Bringas, Pablo García García, Hilde Pérez Álvarez, Francisco Martínez Lora, Alicia Troncoso Herrero, Álvaro Quintián, Héctor Corchado, Emilio Department of Industrial Engineering University of A Coruña A Coruña Spain Department of Mechanical Engineering University of La Rioja Logroño Spain Faculty of Engineering University of Deusto Bilbao Spain School of Industrial Computer University of Leon León Spain Data Science and Big Data Lab Pablo de Olavide University Seville Spain Applied Computational Intelligence University of Burgos Burgos Spain Faculty of Science University of Salamanca Salamanca Spain
来源: 评论
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, Aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
StarGAT: Star-Shaped Hierarchical Graph Attentional Network for Heterogeneous Network Representation Learning
StarGAT: Star-Shaped Hierarchical Graph Attentional Network ...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Wen-Zhi Li Ling Huang Chang-Dong Wang Yu-Xin Ye School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Province Key Laboratory of Computational Science Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China College of Mathematics and Informatics South China Agricultural University Guangzhou China Guangdong Provincial Key Laboratory of Public Finance and Taxation with Big Data Application Guangzhou China College of Computer Science and Technology Jilin University Changchun China
Many real-world graphs can be viewed as Heterogeneous Networks or Heterogeneous Information Networks (HINs) for that they comprise a diversity of node types and relation types. Due to the efficient representation abil... 详细信息
来源: 评论
ProxyBO: Accelerating Neural Architecture Search via Bayesian Optimization with Zero-Cost Proxies
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Yu Li, Yang Zheng, Jian Zhang, Wentao Yao, Peng Li, Jixiang Yang, Sen Liu, Ji Cui, Bin Key Lab of High Confidence Software Technologies Peking University China Institute of Computational Social Science Peking University Qingdao China School of Computer Science and Engineering Beihang University China Kuaishou Technology China Data Platform TEG Tencent Inc. China Mila - Québec AI Institute Canada HEC Montréal Canada
Designing neural architectures requires immense manual efforts. This has promoted the development of neural architecture search (NAS) to automate the design. While previous NAS methods achieve promising results but ru... 详细信息
来源: 评论
Stability of stochastic gradient descent on nonsmooth convex losses  20
Stability of stochastic gradient descent on nonsmooth convex...
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Raef Bassily Vitaly Feldman Cristóbal Guzmán Kunal Talwar Department of Computer Science & Engineering The Ohio State University Apple Pontificia Universidad Católica de Chile Institute for Mathematical and Computational Engineering ANID – Millennium Science Initiative Program Millennium Nucleus Center for the Discovery of Structures in Complex Data
Uniform stability is a notion of algorithmic stability that bounds the worst case change in the model output by the algorithm when a single data point in the dataset is replaced. An influential work of Hardt et al. [2...
来源: 评论
Selecting the number of components in PCA via random signflips
arXiv
收藏 引用
arXiv 2020年
作者: Hong, David Sheng, Yue Dobriban, Edgar Department of Electrical and Computer Engineering University of Delaware United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Department of Statistics and Data Science University of Pennsylvania United States
Principal component analysis (PCA) is a foundational tool in modern data analysis, and a crucial step in PCA is selecting the number of components to keep. However, classical selection methods (e.g., scree plots, para... 详细信息
来源: 评论
Waiting-time paradox in 1922
arXiv
收藏 引用
arXiv 2020年
作者: Masuda, Naoki Hiraoka, Takayuki Department of Mathematics University at Buffalo State University of New York BuffaloNY14260-2900 United States Computational and Data-Enabled Science and Engineering Program University at Buffalo State University of New York BuffaloNY14260-5030 United States Department of Computer Science Aalto University Espoo00076 Finland
We present an English translation and discussion of an essay that a Japanese physicist, Torahiko Terada, wrote in 1922. In the essay, he described the waiting-time paradox, also called the bus paradox, which is a know... 详细信息
来源: 评论