咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 272 篇 会议
  • 6 册 图书

馆藏范围

  • 737 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 466 篇 工学
    • 315 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 89 篇 生物工程
    • 79 篇 信息与通信工程
    • 72 篇 生物医学工程(可授...
    • 67 篇 电气工程
    • 62 篇 控制科学与工程
    • 55 篇 电子科学与技术(可...
    • 48 篇 光学工程
    • 31 篇 化学工程与技术
    • 23 篇 仪器科学与技术
    • 23 篇 材料科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 18 篇 机械工程
  • 365 篇 理学
    • 161 篇 数学
    • 115 篇 生物学
    • 96 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 42 篇 化学
    • 39 篇 系统科学
  • 139 篇 管理学
    • 76 篇 管理科学与工程(可...
    • 59 篇 图书情报与档案管...
    • 44 篇 工商管理
    • 17 篇 公共管理
  • 88 篇 医学
    • 67 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 46 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 26 篇 农学
  • 24 篇 法学
    • 22 篇 社会学
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 7 篇 教育学
  • 2 篇 文学

主题

  • 28 篇 machine learning
  • 23 篇 deep learning
  • 17 篇 training
  • 13 篇 computational mo...
  • 13 篇 predictive model...
  • 13 篇 semantics
  • 13 篇 accuracy
  • 12 篇 generative adver...
  • 12 篇 real-time system...
  • 12 篇 feature extracti...
  • 11 篇 optimization
  • 11 篇 decision making
  • 11 篇 forecasting
  • 8 篇 covid-19
  • 8 篇 adaptation model...
  • 7 篇 scalability
  • 7 篇 resource managem...
  • 7 篇 data mining
  • 7 篇 artificial intel...
  • 7 篇 data models

机构

  • 9 篇 applied mathemat...
  • 9 篇 computational an...
  • 8 篇 school of data a...
  • 8 篇 computational an...
  • 8 篇 department of da...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 srm institute of...
  • 7 篇 department of ma...
  • 7 篇 department of co...
  • 7 篇 school of data s...
  • 7 篇 shenzhen researc...
  • 6 篇 department of bi...
  • 6 篇 institute of com...
  • 6 篇 information stor...
  • 6 篇 department of co...
  • 6 篇 computer network...
  • 6 篇 faculty of scien...
  • 6 篇 department of me...
  • 6 篇 zhejiang bioinfo...

作者

  • 40 篇 masuda naoki
  • 13 篇 herrera-viedma e...
  • 11 篇 shoeibi afshin
  • 10 篇 naoki masuda
  • 10 篇 alizadehsani roo...
  • 10 篇 jasra ajay
  • 9 篇 mani deepak chou...
  • 8 篇 akshya j.
  • 8 篇 nahavandi saeid
  • 8 篇 huang ming-chun
  • 8 篇 islam ashraful
  • 7 篇 choudhry mani de...
  • 7 篇 m. sundarrajan
  • 6 篇 mitra pabitra
  • 6 篇 acharya u. rajen...
  • 6 篇 hussain sadiq
  • 6 篇 jafari mahboobeh
  • 6 篇 khosravi abbas
  • 6 篇 xu wenyao
  • 5 篇 james s. plank

语言

  • 659 篇 英文
  • 73 篇 其他
  • 6 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Computer Science & Engineering Computational and Data-enabled Science & Engineering"
737 条 记 录,以下是491-500 订阅
排序:
Adaptive gradient methods with dynamic bound of learning rate  7
Adaptive gradient methods with dynamic bound of learning rat...
收藏 引用
7th International Conference on Learning Representations, ICLR 2019
作者: Luo, Liangchen Xiong, Yuanhao Liu, Yan Sun, Xu MOE Key Lab of Computational Linguistics School of EECS Peking University China College of Information Science and Electronic Engineering Zhejiang University China Department of Computer Science University of Southern California United States Center for Data Science Beijing Institute of Big Data Research Peking University China
Adaptive optimization methods such as ADAGRAD, RMSPROP and ADAM have been proposed to achieve a rapid training process with an element-wise scaling term on learning rates. Though prevailing, they are observed to gener... 详细信息
来源: 评论
Prediction of Oral Food Challenge Outcomes via Ensemble Learning
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Justin Lee, Deborah Jungles, Kylie Shaltis, Diane Najarian, Kayvan Ravikumar, Rajan Sanders, Georgiana Gryak, Jonathan Department of Electrical and Computer Engineering University of Michigan Ann ArborMI United States Department of Internal Medicine University of Michigan Ann ArborMI United States Department of Pediatrics University of Michigan Ann ArborMI United States Department of Computational Medicine and Bioinformatics University of Michigan Ann ArborMI United States Michigan Institute for Data Science University of Michigan Ann ArborMI United States Department of Emergency Medicine University of Michigan Ann ArborMI United States Department of Computer Science and Engineering University of Michigan Ann ArborMI United States Max Harry Weil Institute for Critical Care Research and Innovation University of Michigan Ann ArborMI United States Mary H. Weiser Food Allergy Center University of Michigan Ann ArborMI United States Department of Computer Science Queens College City University of New York New YorkNY United States
Oral Food Challenges (OFCs) are essential to accurately diagnosing food allergy due to the limitations of existing clinical testing. However, some patients are hesitant to undergo OFCs, while those willing suffer from... 详细信息
来源: 评论
Improving Policy-Oriented Agent-Based Modeling with History Matching: A Case Study
arXiv
收藏 引用
arXiv 2024年
作者: O’Gara, David Kerr, Cliff C. Klein, Daniel J. Binois, Mickaël Garnett, Roman Hammond, Ross A. Division of Computational and Data Sciences Washington University in St. Louis St. LouisMO United States Institute for Disease Modeling Bill & Melinda Gates Foundation SeattleWA United States Acumes Team Université Côte d’Azur Inria Sophia Antipolis France Department of Computer Science McKelvey School of Engineering Washington University in St. Louis St. LouisMO United States Public Health Brown School Washington University in St. Louis St. LouisMO United States Center on Social Dynamics and Policy Brookings Institution WashingtonDC United States The Santa Fe Institute Santa FeNM United States
Advances in computing power and data availability have led to growing sophistication in mechanistic mathematical models of social dynamics. Increasingly these models are used to inform real-world policy decision-makin... 详细信息
来源: 评论
Analysis of node2vec random walks on networks
arXiv
收藏 引用
arXiv 2020年
作者: Meng, Lingqi Masuda, Naoki Department of Mathematics University at Buffalo State University of New York BuffaloNY14260-2900 United States Computational and Data-Enabled Science and Engineering Program University at Buffalo State University of New York BuffaloNY14260-5030 United States
Random walks have been proven to be useful for constructing various algorithms to gain information on networks. Algorithm node2vec employs biased random walks to realize embeddings of nodes into low-dimensional spaces... 详细信息
来源: 评论
Meta-analysis of computational methods for breast cancer classification
收藏 引用
International Journal of Intelligent Information and database Systems 2020年 第1期13卷 89-111页
作者: Pham, Tri-Cong Luong, Chi-Mai Doucet, Antoine Hoang, Van-Dung Tran, Diem-Phuc Le, Duc-Hau School of Computer Science and Engineering Thu-yloi University 175 Tay Son Dong Da Hanoi Viet Nam Department of Informatics and Communication Technology University of Science and Technology of Hanoi Hanoi Viet Nam Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Cau Giay Hanoi Viet Nam Institute of Information Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Cau Giay Hanoi Viet Nam Laboratory L3i University of La Rochelle France QuangBinh University Dong Hoi Quang Binh Viet Nam DuyTan University Da Nang Viet Nam Department of Computational Biomedicine Vingroup Big Data Institute No 7 Bang Lang 1 Street Viet Hung Ward Hanoi Viet Nam
Millions of women are suffering from breast cancer pressing burden on their shoulders and the global economy. Meanwhile, general treatment methods are applied without considering personalised health and genetic featur... 详细信息
来源: 评论
Identifying Reasons for Contraceptive Switching from Real-World data Using Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Miao, Brenda Y. Williams, Christopher Y.K. Chinedu-Eneh, Ebenezer Zack, Travis Alsentzer, Emily Butte, Atul J. Chen, Irene Y. Bakar Computational Health Sciences Institute University of California San Francisco San FranciscoCA United States Department of Medicine University of California San Francisco San FranciscoCA United States Helen Diller Family Comprehensive Cancer Center University of California San Francisco San FranciscoCA United States Division of General Internal Medicine Brigham and Women's Hospital BostonMA United States Harvard Medical School BostonMA United States Center for Data-driven Insights and Innovation University of California Office of the President OaklandCA United States Computational Precision Health University of California Berkeley University of California San Francisco BerkeleyCA United States Electrical Engineering and Computer Science University of California Berkeley BerkeleyCA United States Berkeley AI Research University of California Berkeley BerkeleyCA United States
Background: Understanding why patients switch contraceptives is of significant interest but these factors are often only captured in unstructured clinical notes and can be difficult to extract. We evaluate the zero-sh... 详细信息
来源: 评论
EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) 2.0: A MANIFESTO OF OPEN CHALLENGES AND INTERDISCIPLINARY RESEARCH DIRECTIONS
arXiv
收藏 引用
arXiv 2023年
作者: Longo, Luca Brcic, Mario Cabitza, Federico Choi, Jaesik Confalonieri, Roberto Ser, Javier Del Guidotti, Riccardo Hayashi, Yoichi Herrera, Francisco Holzinger, Andreas Jiang, Richard Khosravi, Hassan Lecue, Freddy Malgieri, Gianclaudio Páez, Andrés Samek, Wojciech Schneider, Johannes Speith, Timo Stumpf, Simone The Artificial Intelligence and Cognitive Load Research Lab Technological University Dublin Ireland University of Zagreb Faculty of Electrical Engineering and Computing Croatia University of Milano-Bicocca Milan Italy IRCCS Ospedale Galeazzi Sant’Ambrogio Milan Italy Kim Jaechul Graduate School of AI Korea Advanced Institute of Science & Technology Korea Republic of INEEJI Corporation Korea Republic of Department of Mathematics University of Padua Italy Derio Spain Bilbao Spain University of Pisa Pisa Italy Department of Computer Science Meiji University Tokyo Japan Department of Computer Science and Artificial Intelligence DaSCI Andalusian Institute in Data Science & Computational Intelligence University of Granada Granada Spain Human-Centered AI Lab University of Natural Resources and Life Sciences Vienna Austria School of Computing and Communications Lancaster University United Kingdom The University of Queensland Brisbane Australia Sophia Antipolis France eLaw Center for Law and Digital Technologies Leiden University Netherlands Department of Philosophy Universidad de los Andes Bogotá Colombia Center for Research & Formation in Artificial Intelligence Universidad de los Andes Bogotá Colombia Technical University of Berlin Berlin Germany Fraunhofer Heinrich Hertz Institute Berlin Germany Berlin Germany Department of Information Systems and Computer Science University of Liechtenstein Liechtenstein Liechtenstein Department of Philosophy University of Bayreuth Bayreuth Germany Center for Perspicuous Computing Saarland University Saarbrücken Germany School of Computing Science University of Glasgow United Kingdom
As systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications, understanding these black box models has become paramount. In response, Explainable AI (XAI) has emerged... 详细信息
来源: 评论
One-dimensional deep low-rank and sparse network for accelerated MRI
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Zi Qian, Chen Guo, Di Sun, Hongwei Li, Rushuai Zhao, Bo Qu, Xiaobo Department of Electronic Science Biomedical Intelligent Cloud R&D Center Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Xiamen University China School of Computer and Information Engineering Xiamen University of Technology Xiamen China United Imaging Research Institute of Intelligent Imaging Beijing China Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing China Department of Biomedical Engineering Oden Institute for Computational Engineering and Sciences University of Texas at Austin Austin United States
Deep learning has shown astonishing performance in accelerated magnetic resonance imaging (MRI). Most state-of-the-art deep learning reconstructions adopt the powerful convolutional neural network and perform 2D convo... 详细信息
来源: 评论
Generative models of simultaneously heavy-tailed distributions of interevent times on nodes and edges
收藏 引用
Physical Review E 2020年 第5期102卷 052303-052303页
作者: Elohim Fonseca dos Reis Aming Li Naoki Masuda Department of Mathematics State University of New York at Buffalo Buffalo New York 14260 USA Department of Zoology University of Oxford Oxford OX1 3PS United Kingdom Department of Biochemistry University of Oxford Oxford OX1 3QU United Kingdom Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo Buffalo New York 14260 USA Faculty of Science and Engineering Waseda University 169-8555 Tokyo Japan
Intervals between discrete events representing human activities, as well as other types of events, often obey heavy-tailed distributions, and their impacts on collective dynamics on networks such as contagion processe... 详细信息
来源: 评论
Emergency Department Decision Support using Clinical Pseudo-notes
arXiv
收藏 引用
arXiv 2024年
作者: Lee, Simon A. Jain, Sujay Chen, Alex Ono, Kyoka Rudas, Akos Fang, Jennifer Chiang, Jeffrey N. Department of Computational Medicine University of California Los AngelesCA90095 United States Department of Electrical and Computer Engineering University of California at Los Angeles Los AngelesCA90095 United States Department of Statistics and Data Science University of California Los Angeles United States Department of Natural Sciences International Christian University Mitaka Tokyo Japan LA Health Services Enterprise Clinical Informatics Los AngelesCA United States Harbor-UCLA Medical Center Department of Emergency Medicine TorranceCA United States University of California Los Angeles Department of Emergency Medicine Los AngelesCA United States Department of Neurosurgery University of California Los AngelesCA90095 United States
In this work, we introduce the Multiple Embedding Model for EHR (MEME), an approach that serializes multimodal EHR tabular data into text using "pseudo-notes", mimicking clinical text generation. This conver... 详细信息
来源: 评论