咨询与建议

限定检索结果

文献类型

  • 477 篇 期刊文献
  • 275 篇 会议
  • 6 册 图书

馆藏范围

  • 758 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 476 篇 工学
    • 327 篇 计算机科学与技术...
    • 268 篇 软件工程
    • 88 篇 生物工程
    • 81 篇 信息与通信工程
    • 72 篇 生物医学工程(可授...
    • 66 篇 电气工程
    • 61 篇 控制科学与工程
    • 54 篇 电子科学与技术(可...
    • 50 篇 光学工程
    • 32 篇 化学工程与技术
    • 23 篇 材料科学与工程(可...
    • 22 篇 仪器科学与技术
    • 18 篇 动力工程及工程热...
    • 16 篇 机械工程
  • 370 篇 理学
    • 164 篇 数学
    • 116 篇 生物学
    • 93 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 42 篇 化学
    • 39 篇 系统科学
  • 139 篇 管理学
    • 77 篇 管理科学与工程(可...
    • 59 篇 图书情报与档案管...
    • 47 篇 工商管理
    • 16 篇 公共管理
  • 88 篇 医学
    • 67 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 45 篇 公共卫生与预防医...
    • 32 篇 药学(可授医学、理...
  • 27 篇 农学
  • 25 篇 法学
    • 23 篇 社会学
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 6 篇 教育学
  • 2 篇 文学

主题

  • 28 篇 machine learning
  • 24 篇 deep learning
  • 19 篇 training
  • 16 篇 computational mo...
  • 15 篇 predictive model...
  • 14 篇 accuracy
  • 13 篇 semantics
  • 12 篇 generative adver...
  • 12 篇 real-time system...
  • 12 篇 feature extracti...
  • 11 篇 optimization
  • 11 篇 decision making
  • 11 篇 forecasting
  • 11 篇 adaptation model...
  • 10 篇 data models
  • 8 篇 covid-19
  • 8 篇 data mining
  • 8 篇 artificial intel...
  • 7 篇 scalability
  • 7 篇 reinforcement le...

机构

  • 9 篇 computational an...
  • 8 篇 applied mathemat...
  • 8 篇 school of data a...
  • 8 篇 computational an...
  • 8 篇 department of co...
  • 8 篇 shenzhen researc...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 department of bi...
  • 7 篇 srm institute of...
  • 7 篇 department of ma...
  • 7 篇 department of da...
  • 6 篇 department of mo...
  • 6 篇 institute of com...
  • 6 篇 information stor...
  • 6 篇 department of co...
  • 6 篇 computer network...
  • 6 篇 faculty of scien...
  • 6 篇 department of me...
  • 6 篇 zhejiang bioinfo...

作者

  • 40 篇 masuda naoki
  • 13 篇 herrera-viedma e...
  • 11 篇 shoeibi afshin
  • 10 篇 alizadehsani roo...
  • 9 篇 akshya j.
  • 9 篇 naoki masuda
  • 9 篇 jasra ajay
  • 8 篇 choudhry mani de...
  • 8 篇 nahavandi saeid
  • 8 篇 mani deepak chou...
  • 7 篇 huang ming-chun
  • 6 篇 mitra pabitra
  • 6 篇 acharya u. rajen...
  • 6 篇 enrique herrera-...
  • 6 篇 hussain sadiq
  • 6 篇 shuai wang
  • 6 篇 jafari mahboobeh
  • 6 篇 m. sundarrajan
  • 6 篇 khosravi abbas
  • 6 篇 sundarrajan m.

语言

  • 618 篇 英文
  • 135 篇 其他
  • 8 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 罗马尼亚文
检索条件"机构=Computer Science & Engineering Computational and Data-enabled Science & Engineering"
758 条 记 录,以下是511-520 订阅
排序:
Generative models of simultaneously heavy-tailed distributions of interevent times on nodes and edges
收藏 引用
Physical Review E 2020年 第5期102卷 052303-052303页
作者: Elohim Fonseca dos Reis Aming Li Naoki Masuda Department of Mathematics State University of New York at Buffalo Buffalo New York 14260 USA Department of Zoology University of Oxford Oxford OX1 3PS United Kingdom Department of Biochemistry University of Oxford Oxford OX1 3QU United Kingdom Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo Buffalo New York 14260 USA Faculty of Science and Engineering Waseda University 169-8555 Tokyo Japan
Intervals between discrete events representing human activities, as well as other types of events, often obey heavy-tailed distributions, and their impacts on collective dynamics on networks such as contagion processe... 详细信息
来源: 评论
One-dimensional deep low-rank and sparse network for accelerated MRI
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Zi Qian, Chen Guo, Di Sun, Hongwei Li, Rushuai Zhao, Bo Qu, Xiaobo Department of Electronic Science Biomedical Intelligent Cloud R&D Center Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Xiamen University China School of Computer and Information Engineering Xiamen University of Technology Xiamen China United Imaging Research Institute of Intelligent Imaging Beijing China Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing China Department of Biomedical Engineering Oden Institute for Computational Engineering and Sciences University of Texas at Austin Austin United States
Deep learning has shown astonishing performance in accelerated magnetic resonance imaging (MRI). Most state-of-the-art deep learning reconstructions adopt the powerful convolutional neural network and perform 2D convo... 详细信息
来源: 评论
Emergency Department Decision Support using Clinical Pseudo-notes
arXiv
收藏 引用
arXiv 2024年
作者: Lee, Simon A. Jain, Sujay Chen, Alex Ono, Kyoka Rudas, Akos Fang, Jennifer Chiang, Jeffrey N. Department of Computational Medicine University of California Los AngelesCA90095 United States Department of Electrical and Computer Engineering University of California at Los Angeles Los AngelesCA90095 United States Department of Statistics and Data Science University of California Los Angeles United States Department of Natural Sciences International Christian University Mitaka Tokyo Japan LA Health Services Enterprise Clinical Informatics Los AngelesCA United States Harbor-UCLA Medical Center Department of Emergency Medicine TorranceCA United States University of California Los Angeles Department of Emergency Medicine Los AngelesCA United States Department of Neurosurgery University of California Los AngelesCA90095 United States
In this work, we introduce the Multiple Embedding Model for EHR (MEME), an approach that serializes multimodal EHR tabular data into text using "pseudo-notes", mimicking clinical text generation. This conver... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
Concurrency measures in the era of temporal network epidemiology: A review
arXiv
收藏 引用
arXiv 2020年
作者: Masuda, Naoki Miller, Joel C. Holme, Petter Department of Mathematics State University of New York Buffalo United States Computational and Data-Enabled Science and Engineering Program State University of New York Buffalo United States School of Engineering and Mathematical Sciences La Trobe University Australia Institute of Innovative Research Tokyo Institute of Technology Yokohama226-8503 Japan
Diseases spread over temporal networks of interaction events between individuals. Structures of these temporal networks hold the keys to understanding epidemic propagation. One early concept of the literature to aid i... 详细信息
来源: 评论
Creating expert knowledge by relying on language learners: A generic approach for mass-producing language resources by combining implicit crowdsourcing and language learning  12
Creating expert knowledge by relying on language learners: A...
收藏 引用
12th International Conference on Language Resources and Evaluation, LREC 2020
作者: Nicolas, Lionel Lyding, Verena Borg, Claudia Forascu, Corina Fort, Karën Zdravkova, Katerina Kosem, Iztok Cibej, Jaka Holdt, Špela Arhar Millour, Alice König, Alexander Rodosthenous, Christos Sangati, Federico Ul Hassan, Umair Katinskaia, Anisia Barreiro, Anabela Aparaschivei, Lavinia HaCohen-Kerner, Yaakov Institute for Applied Linguistics Eurac Research Bolzano Italy Faculty of Information and Communication Technology University of Malta Msida Malta Faculty of Computer Science Alexandru Ioan Cuza University of Iasi Romania Sorbonne Université STIH - EA 4509 France Ss. Cyril and Methodius University Faculty of Computer Science and Engineering Macedonia Faculty of Arts University of Ljubljana Slovenia CLARIN ERIC Netherlands Computational Cognition Lab Open University of Cyprus Cyprus Orientale University of Naples Italy Insight Centre for Data Analytics National University of Ireland Galway Ireland Department of Computer Science University of Helsinki Finland Human Languages Technologies Lab INESC-ID Lisbon Portugal Israel
We introduce in this paper a generic approach to combine implicit crowdsourcing and language learning in order to mass-produce language resources (LRs) for any language for which a crowd of language learners can be in... 详细信息
来源: 评论
Robust charge-density wave correlations in the electron-doped single-band Hubbard model
arXiv
收藏 引用
arXiv 2022年
作者: Mai, Peizhi Nichols, Nathan S. Karakuzu, Seher Bao, Feng Maestro, Adrian Del Maier, Thomas A. Johnston, Steven Computational Sciences and Engineering Division Oak Ridge National Laboratory Oak RidgeTN37831-6494 United States Department of Physics Institute of Condensed Matter Theory University of Illinois at Urbana-Champaign UrbanaIL61801 United States Data Science and Learning Division Argonne National Laboratory ArgonneIL60439 United States Center for Computational Quantum Physics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Department of Mathematics Florida State University TallahasseeFL32306 United States Department of Physics and Astronomy The University of Tennessee KnoxvilleTN37996 United States Institute of Advanced Materials and Manufacturing The University of Tennessee KnoxvilleTN37996 United States Min H. Kao Department of Electrical Engineering and Computer Science University of Tennessee KnoxvilleTN37996 United States
There is growing evidence that the hole-doped single-band Hubbard and t-J models do not have a superconducting ground state reflective of the high-temperature cuprate superconductors but instead have striped spin- and... 详细信息
来源: 评论
Completely self-supervised crowd counting via distribution matching
arXiv
收藏 引用
arXiv 2020年
作者: Sam, Deepak Babu Agarwalla, Abhinav Joseph, Jimmy Sindagi, Vishwanath A. Babu, R. Venkatesh Patel, Vishal M. Video Analytics Lab Department of Computational and Data Sciences Indian Institute of Science Bangalore India Vision & Image Understanding Lab Department of Electrical and Computer Engineering Johns Hopkins University Baltimore United States
Dense crowd counting is a challenging task that demands millions of head annotations for training models. Though existing self-supervised approaches could learn good representations, they require some labeled data to ... 详细信息
来源: 评论
Integration of droplet microfluidic tools for single-cell functional metagenomics: an engineering head start
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Conchouso, David Al-Ma’abadi, Amani Behzad, Hayedeh Alarawi, Mohammed Hosokawa, Masahito Nishikawa, Yohei Takeyama, Haruko Mineta, Katsuhiko Gojobori, Takashi Departamento de Ingeniería Industrial y Mecánica Escuela de Ingeniería Universidad de las Américas Puebla Puebla72810 Mexico Computational Bioscience Research Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia Biological and Environmental Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia Research Organization for Nano & Life Innovation Waseda University Tokyo162–0041 Japan Department of Life Science and Medical Bioscience Waseda University Tokyo162–8480 Japan Institute for Advanced Research of Biosystem Dynamics Waseda Research Institute for Science and Engineering Waseda University Tokyo169-8555 Japan Computational Bio Big-Data Open Innovation Laboratory AIST-Waseda University Tokyo169–0072 Japan Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
Droplet microfluidics techniques have shown promising results to study single-cells at high throughput. However, their adoption in laboratories studying "-omics" sciences is still irrelevant because of the f... 详细信息
来源: 评论
The Waiting-Time Paradox
arXiv
收藏 引用
arXiv 2020年
作者: Masuda, Naoki Porter, Mason A. Department of Mathematics State University of New York at Buffalo BuffaloNY United States Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo BuffaloNY United States Department of Mathematics University of California Los Angeles Los AngelesCA United States
Suppose that you’re going to school and arrive at a bus stop. How long do you have to wait before the next bus arrives? Surprisingly, it is longer — possibly much longer — than what the bus schedule suggests intuit... 详细信息
来源: 评论