咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 272 篇 会议
  • 6 册 图书

馆藏范围

  • 737 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 466 篇 工学
    • 315 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 89 篇 生物工程
    • 79 篇 信息与通信工程
    • 72 篇 生物医学工程(可授...
    • 67 篇 电气工程
    • 62 篇 控制科学与工程
    • 55 篇 电子科学与技术(可...
    • 48 篇 光学工程
    • 31 篇 化学工程与技术
    • 23 篇 仪器科学与技术
    • 23 篇 材料科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 18 篇 机械工程
  • 365 篇 理学
    • 161 篇 数学
    • 115 篇 生物学
    • 96 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 42 篇 化学
    • 39 篇 系统科学
  • 139 篇 管理学
    • 76 篇 管理科学与工程(可...
    • 59 篇 图书情报与档案管...
    • 44 篇 工商管理
    • 17 篇 公共管理
  • 88 篇 医学
    • 67 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 46 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 26 篇 农学
  • 24 篇 法学
    • 22 篇 社会学
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 7 篇 教育学
  • 2 篇 文学

主题

  • 28 篇 machine learning
  • 23 篇 deep learning
  • 17 篇 training
  • 13 篇 computational mo...
  • 13 篇 predictive model...
  • 13 篇 semantics
  • 13 篇 accuracy
  • 12 篇 generative adver...
  • 12 篇 real-time system...
  • 12 篇 feature extracti...
  • 11 篇 optimization
  • 11 篇 decision making
  • 11 篇 forecasting
  • 8 篇 covid-19
  • 8 篇 adaptation model...
  • 7 篇 scalability
  • 7 篇 resource managem...
  • 7 篇 data mining
  • 7 篇 artificial intel...
  • 7 篇 data models

机构

  • 9 篇 applied mathemat...
  • 9 篇 computational an...
  • 8 篇 school of data a...
  • 8 篇 computational an...
  • 8 篇 department of da...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 srm institute of...
  • 7 篇 department of ma...
  • 7 篇 department of co...
  • 7 篇 school of data s...
  • 7 篇 shenzhen researc...
  • 6 篇 department of bi...
  • 6 篇 institute of com...
  • 6 篇 information stor...
  • 6 篇 department of co...
  • 6 篇 computer network...
  • 6 篇 faculty of scien...
  • 6 篇 department of me...
  • 6 篇 zhejiang bioinfo...

作者

  • 40 篇 masuda naoki
  • 13 篇 herrera-viedma e...
  • 11 篇 shoeibi afshin
  • 10 篇 naoki masuda
  • 10 篇 alizadehsani roo...
  • 10 篇 jasra ajay
  • 9 篇 mani deepak chou...
  • 8 篇 akshya j.
  • 8 篇 nahavandi saeid
  • 8 篇 huang ming-chun
  • 8 篇 islam ashraful
  • 7 篇 choudhry mani de...
  • 7 篇 m. sundarrajan
  • 6 篇 mitra pabitra
  • 6 篇 acharya u. rajen...
  • 6 篇 hussain sadiq
  • 6 篇 jafari mahboobeh
  • 6 篇 khosravi abbas
  • 6 篇 xu wenyao
  • 5 篇 james s. plank

语言

  • 659 篇 英文
  • 73 篇 其他
  • 6 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Computer Science & Engineering Computational and Data-enabled Science & Engineering"
737 条 记 录,以下是521-530 订阅
排序:
The Minimum Information about CLinical Artificial Intelligence Checklist for Generative Modeling Research (MI-CLAIM-GEN)
arXiv
收藏 引用
arXiv 2024年
作者: Miao, Brenda Y. Chen, Irene Y. Williams, Christopher Y.K. Davidson, Jaysón Garcia-Agundez, Augusto Sun, Shenghuan Zack, Travis Saria, Suchi Arnaout, Rima Quer, Giorgio Sadaei, Hossein J. Torkamani, Ali Beaulieu-Jones, Brett Yu, Bin Gianfrancesco, Milena Butte, Atul J. Norgeot, Beau Sushil, Madhumita Bakar Computational Health Sciences Institute University of California San Francisco San FranciscoCA United States UCSF-UC Berkeley Joint Program in Computational Precision Health University of California Berkeley University of California San Francisco BerkeleyCA United States Department of Electrical Engineering and Computer Sciences University of California Berkeley BerkeleyCA United States Berkeley AI Research University of California Berkeley BerkeleyCA United States Department of Medicine Division of Rheumatology University of California San Francisco San FranciscoCA United States Helen Diller Family Comprehensive Cancer Center University of California San Francisco San FranciscoCA United States Center for Data-driven Insights and Innovation University of California Office of the President OaklandCA United States Bayesian Health New YorkNY10282 United States Department of Computer Science Johns Hopkins University Whiting School of Engineering BaltimoreMD United States Department of Health Policy & Management Johns Hopkins University Bloomberg School of Public Health BaltimoreMD United States Department of Medicine Johns Hopkins Medicine BaltimoreMD21205 United States Departments of Medicine Radiology and Pediatrics University of California San Francisco San FranciscoCA United States Scripps Research Translational Institute La Jolla CA United States Department of Integrative Structural and Computational Biology Scripps Research La Jolla CA92037 United States Department of Medicine University of Chicago ChicagoIL United States Department of Statistics University of California Berkeley BerkeleyCA United States Center for Computational Biology University of California Berkeley BerkeleyCA United States Qualified Health PBC Palo AltoCA United States
Recent advances in generative models, including large language models (LLMs), vision language models (VLMs), and diffusion models, have accelerated the field of natural language and image processing in medicine and ma... 详细信息
来源: 评论
Generative models of simultaneously heavy-tailed distributions of inter-event times on nodes and edges
arXiv
收藏 引用
arXiv 2020年
作者: dos Reis, Elohim Fonseca Li, Aming Masuda, Naoki Department of Mathematics State University of New York at Buffalo BuffaloNY United States Department of Zoology University of Oxford Oxford United Kingdom Department of Biochemistry University ofOxford Oxford United Kingdom Computational and Data-Enabled Science and Engineering Program State University of New York at Buffalo BuffaloNY United States
Intervals between discrete events representing human activities, as well as other types of events, often obey heavy-tailed distributions, and their impacts on collective dynamics on networks such as contagion processe... 详细信息
来源: 评论
Can Primal Methods Outperform Primal-dual Methods in Decentralized Dynamic Optimization?
arXiv
收藏 引用
arXiv 2020年
作者: Yuan, Kun Xu, Wei Ling, Qing Department of Electrical and Computer Engineering University of California Los Angeles Department of Automation University of Science and Technology of China. School of Data and Computer Science Guangdong Province Key Laboratory of Computational Science Sun Yat-Sen University NSF China Grants Fundamental Research Funds Central Universities Asilomar Conference on Signals Systems and Computers Pacific Grove61573331 and 61973324 United States
In this paper, we consider the decentralized dynamic optimization problem defined over a multi-agent network. Each agent possesses a time-varying local objective function, and all agents aim to collaboratively track t... 详细信息
来源: 评论
Ball k-means
arXiv
收藏 引用
arXiv 2020年
作者: Xia, Shuyin Peng, Daowan Meng, Deyu Zhang, Changqing Wang, Guoyin Chen, Zizhong Wei, Wei Department of Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and Telecommunications Chongqing400065 China National Engineering Laboratory for Algorithm and Analysis Technologiy on Big Data Xian Jiaotong University Xi'an710049 China College of Intelligence and Computing Tianjin University 300072 China Department of Computer Science and Engineering University of California Riverside 900 University Avenue RiversideCA92521 United States School of Computer Science and Engineering Xi'an University of Technology Xi'an710048 China
This paper presents a novel accelerated exact k-means algorithm called the Ball k-means algorithm, which uses a ball to describe a cluster, focusing on reducing the point-centroid distance computation. The Ball k-mean... 详细信息
来源: 评论
Genes and comorbidities of thyroid cancer
收藏 引用
Informatics in Medicine Unlocked 2021年 25卷
作者: Ljubic, Branimir Pavlovski, Martin Roychoudhury, Shoumik Van Neste, Christophe Salhi, Adil Essack, Magbubah Bajic, Vladimir B. Obradovic, Zoran Temple University Center for Data Analytics and Biomedical Informatics (DABI) Philadelphia 19122 PA United States Rutgers University the Office of Advanced Research Computing (OARC) Piscataway 08854 NJ United States Center for Medical Genetics (CMGG) Ghent University Ghent Belgium King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Center (CBRC) Computer Electrical and Mathematical Science and Engineering (CEMSE) Division Thuwal Saudi Arabia
Introduction: Thyroid cancer represents 3.1 % of diagnosed cancers in the United States. The objective of this research was to identify comorbidities and discover additional genes potentially related to thyroid cancer... 详细信息
来源: 评论
Small inter-event times govern epidemic spreading on networks
收藏 引用
Physical Review Research 2020年 第2期2卷 023163-023163页
作者: Naoki Masuda Petter Holme Department of Mathematics University at Buffalo State University of New York Buffalo New York 14260-2900 USA Computational and Data-Enabled Science and Engineering Program University at Buffalo State University of New York Buffalo New York 14260-5030 USA Tokyo Tech World Research Hub Initiative (WRHI) Institute of Innovative Research Tokyo Institute of Technology Yokohama 226-8503 Japan
Many aspects of human and animal interaction, such as the frequency of contacts of an individual, the number of interaction partners, and the time between the contacts of two individuals, are characterized by heavy-ta... 详细信息
来源: 评论
Multivariate Analysis on Performance Gaps of Artificial Intelligence Models in Screening Mammography
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Linglin Brown-Mulry, Beatrice Nalla, Vineela Hwang, InChan Gichoya, Judy Wawira Gastounioti, Aimilia Banerjee, Imon Seyyed-Kalantari, Laleh Woo, MinJae Trivedi, Hari School of Data Science and Analytics Kennesaw State University 3391 Town Point Dr NW KennesawGA30144 United States Department of Information Technology Kennesaw State University 1100 South Marietta Pkwy MariettaGA30060 United States Department of Radiology and Imaging Sciences Emory University 1364 E Clifton Rd NE AtlantaGA30322 United States Computational Imaging Research Center Washington University in St. Louis School of Medicine 4525 Scott Avenue St. LouisMO63110 United States Department of Radiology Mayo Clinic Arizona 13400 E Shea Blvd ScottsdaleAZ85259 United States School of Computing and Augmented Intelligence Arizona State University 699 S Mill Ave TempeAZ85281 United States Department of Electrical Engineering and Computer Science York University 4700 Keele St TorontoONM3J 1P3 Canada
Although deep learning models for abnormality classification can perform well in screening mammography, the demographic, imaging, and clinical characteristics associated with increased risk of model failure remain unc... 详细信息
来源: 评论
data augmentation for deep candlestick learner
arXiv
收藏 引用
arXiv 2020年
作者: Tsao, Chia-Ying Chen, Jun-Hao Chen, Samuel Yen-Chi Tsai, Yun-Cheng Department of Economics National Taiwan University Taipei10617 Taiwan Department of Computer Science & Information Engineering National Taiwan University Taipei10617 Taiwan Computational Science Initiative Brookhaven National Laboratory UptonNY11973 United States School of Big Data Management Soochow University Taipei11102 Taiwan
To successfully build a deep learning model, it will need a large amount of labeled data. However, labeled data are hard to collect in many use cases. To tackle this problem, a bunch of data augmentation methods have ... 详细信息
来源: 评论
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
arXiv
收藏 引用
arXiv 2023年
作者: Lekadir, Karim Feragen, Aasa Fofanah, Abdul Joseph Frangi, Alejandro F. Buyx, Alena Emelie, Anais Lara, Andrea Porras, Antonio R. Chan, An-Wen Navarro, Arcadi Glocker, Ben Botwe, Benard O. Khanal, Bishesh Beger, Brigit Wu, Carol C. Cintas, Celia Langlotz, Curtis P. Rueckert, Daniel Mzurikwao, Deogratias Fotiadis, Dimitrios I. Zhussupov, Doszhan Ferrante, Enzo Meijering, Erik Weicken, Eva González, Fabio A. Asselbergs, Folkert W. Prior, Fred Krestin, Gabriel P. Collins, Gary S. Tegenaw, Geletaw S. Kaissis, Georgios Misuraca, Gianluca Tsakou, Gianna Dwivedi, Girish Kondylakis, Haridimos Jayakody, Harsha Woodruf, Henry C. Mayer, Horst Joachim Aerts, Hugo JWL Walsh, Ian Chouvarda, Ioanna Buvat, Irène Tributsch, Isabell Rekik, Islem Duncan, James Kalpathy-Cramer, Jayashree Zahir, Jihad Park, Jinah Mongan, John Gichoya, Judy W. Schnabel, Julia A. Kushibar, Kaisar Riklund, Katrine Mori, Kensaku Marias, Kostas Amugongo, Lameck M. Fromont, Lauren A. Maier-Hein, Lena Alberich, Leonor Cerdá Rittner, Leticia Phiri, Lighton Marrakchi-Kacem, Linda Donoso-Bach, Lluís Martí-Bonmatí, Luis Cardoso, M. Jorge Bobowicz, Maciej Shabani, Mahsa Tsiknakis, Manolis Zuluaga, Maria A. Bielikova, Maria Fritzsche, Marie-Christine Camacho, Marina Linguraru, Marius George Wenzel, Markus De Bruijne, Marleen Tolsgaard, Martin G. Ghassemi, Marzyeh Ashrafuzzaman, Md Goisauf, Melanie Yaqub, Mohammad Abadía, Mónica Cano Mahmoud, Mukhtar M.E. Elattar, Mustafa Rieke, Nicola Papanikolaou, Nikolaos Lazrak, Noussair Díaz, Oliver Salvado, Olivier Pujol, Oriol Sall, Ousmane Guevara, Pamela Gordebeke, Peter Lambin, Philippe Brown, Pieta Abolmaesumi, Purang Dou, Qi Lu, Qinghua Osuala, Richard Nakasi, Rose Zhou, S. Kevin Napel, Sandy Colantonio, Sara Albarqouni, Shadi Joshi, Smriti Carter, Stacy Klein, Stefan Petersen, Steffen E. Aussó, Susanna Awate, Suyash Raviv, Tammy Riklin Cook, Tessa Mutsvangwa, Tinashe E.M. Rogers, Wendy A. Niessen, Wiro J. Puig-Bosch, Xènia Zeng, Yi Mohammed, Yunusa G. Aquino, Yves Saint James Salahuddin, Zohaib Starmans, Martijn P.A. Department de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain Barcelona Spain DTU Compute Technical University of Denmark Kgs Lyngby Denmark Department of Mathematics and Computer Science Faculty of Science and Technology Milton Margai Technical University Freetown Sierra Leone Center for Computational Imaging & Simulation Technologies in Biomedicine Schools of Computing and Medicine University of Leeds Leeds United Kingdom Cardiovascular Science and Electronic Engineering Departments KU Leuven Leuven Belgium Institute of History and Ethics in Medicine Technical University of Munich Munich Germany Faculty of Engineering of Systems Informatics and Sciences of Computing Galileo University Guatemala City Guatemala Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus AuroraCO United States Department of Medicine Women’s College Research Institute University of Toronto Toronto Canada Universitat Pompeu Fabra BarcelonaBeta Brain Research Center Barcelona Spain Department of Computing Imperial College London London United Kingdom School of Biomedical & Allied Health Sciences University of Ghana Accra Ghana Department of Midwifery & Radiography School of Health & Psychological Sciences City University of London United Kingdom Kathmandu Nepal European Heart Network Brussels Belgium Department of Thoracic Imaging University of Texas MD Anderson Cancer Center Houston United States IBM Research Africa Nairobi Kenya Departments of Radiology Medicine and Biomedical Data Science Stanford University School of Medicine Stanford United States Institute for AI and Informatics in Medicine Klinikum rechts der Isar Technical University Munich Munich Germany Department of Computing Imperial College London London United Kingdom Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania United Republic of Ioannina Greece Almaty AI Lab Almaty Kazakhstan
Background: Despite major advances in artificial intelligence (AI) research for healthcare, the deployment and adoption of AI technologies remain limited in clinical practice. In recent years, concerns have been raise... 详细信息
来源: 评论
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: The MonuMAI cultural heritage use case
arXiv
收藏 引用
arXiv 2021年
作者: Díaz-Rodríguez, Natalia Lamas, Alberto Sanchez, Jules Franchi, Gianni Donadello, Ivan Tabik, Siham Filliat, David Cruz, Policarpo Montes, Rosana Herrera, Francisco U2IS ENSTA Institut Polytechnique Paris Inria Flowers Palaiseau91762 France Free University of Bozen-Bolzano 39100 Italy DaSCI Andalusian Institute in Data Science and Computational Intelligence University of Granada Granada18071 Spain Faculty of Computing and Information Technology King Abdulaziz University Jeddah21589 Saudi Arabia Department of Art History University of Granada Granada18071 Spain Department of Computer Science and Artificial Intelligence University of Granada Granada18071 Spain Department of Software Engineering University of Granada Granada18071 Spain
The latest Deep Learning (DL) models for detection and classification have achieved an unprecedented performance over classical machine learning algorithms. However, DL models are black-box methods hard to debug, inte... 详细信息
来源: 评论