咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 272 篇 会议
  • 6 册 图书

馆藏范围

  • 737 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 466 篇 工学
    • 315 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 89 篇 生物工程
    • 79 篇 信息与通信工程
    • 72 篇 生物医学工程(可授...
    • 67 篇 电气工程
    • 62 篇 控制科学与工程
    • 55 篇 电子科学与技术(可...
    • 48 篇 光学工程
    • 31 篇 化学工程与技术
    • 23 篇 仪器科学与技术
    • 23 篇 材料科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 18 篇 机械工程
  • 365 篇 理学
    • 161 篇 数学
    • 115 篇 生物学
    • 96 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 42 篇 化学
    • 39 篇 系统科学
  • 139 篇 管理学
    • 76 篇 管理科学与工程(可...
    • 59 篇 图书情报与档案管...
    • 44 篇 工商管理
    • 17 篇 公共管理
  • 88 篇 医学
    • 67 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 46 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 26 篇 农学
  • 24 篇 法学
    • 22 篇 社会学
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 7 篇 教育学
  • 2 篇 文学

主题

  • 28 篇 machine learning
  • 23 篇 deep learning
  • 17 篇 training
  • 13 篇 computational mo...
  • 13 篇 predictive model...
  • 13 篇 semantics
  • 13 篇 accuracy
  • 12 篇 generative adver...
  • 12 篇 real-time system...
  • 12 篇 feature extracti...
  • 11 篇 optimization
  • 11 篇 decision making
  • 11 篇 forecasting
  • 8 篇 covid-19
  • 8 篇 adaptation model...
  • 7 篇 scalability
  • 7 篇 resource managem...
  • 7 篇 data mining
  • 7 篇 artificial intel...
  • 7 篇 data models

机构

  • 9 篇 applied mathemat...
  • 9 篇 computational an...
  • 8 篇 school of data a...
  • 8 篇 computational an...
  • 8 篇 department of da...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 srm institute of...
  • 7 篇 department of ma...
  • 7 篇 department of co...
  • 7 篇 school of data s...
  • 7 篇 shenzhen researc...
  • 6 篇 department of bi...
  • 6 篇 institute of com...
  • 6 篇 information stor...
  • 6 篇 department of co...
  • 6 篇 computer network...
  • 6 篇 faculty of scien...
  • 6 篇 department of me...
  • 6 篇 zhejiang bioinfo...

作者

  • 40 篇 masuda naoki
  • 13 篇 herrera-viedma e...
  • 11 篇 shoeibi afshin
  • 10 篇 naoki masuda
  • 10 篇 alizadehsani roo...
  • 10 篇 jasra ajay
  • 9 篇 mani deepak chou...
  • 8 篇 akshya j.
  • 8 篇 nahavandi saeid
  • 8 篇 huang ming-chun
  • 8 篇 islam ashraful
  • 7 篇 choudhry mani de...
  • 7 篇 m. sundarrajan
  • 6 篇 mitra pabitra
  • 6 篇 acharya u. rajen...
  • 6 篇 hussain sadiq
  • 6 篇 jafari mahboobeh
  • 6 篇 khosravi abbas
  • 6 篇 xu wenyao
  • 5 篇 james s. plank

语言

  • 659 篇 英文
  • 73 篇 其他
  • 6 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Computer Science & Engineering Computational and Data-enabled Science & Engineering"
737 条 记 录,以下是561-570 订阅
排序:
Vaccinations or Non-Pharmaceutical Interventions: Safe Reopening of Schools in England
Research Square
收藏 引用
Research Square 2021年
作者: Cuesta-Lazaro, Carolina Quera-Bofarull, Arnau Aylett-Bullock, Joseph Lawrence, Bryan N. Fong, Kevin Icaza-Lizaola, Miguel Sedgewick, Aidan Truong, Henry Vernon, Ian Williams, Julian Pagel, Christina Krauss, Frank Institute for Data Science Durham University Durham United Kingdom Institute for Computational Cosmology Durham University Durham United Kingdom Institute for Particle Physics Phenomenology Durham University Durham United Kingdom National Centre for Atmospheric Science University of Reading Reading United Kingdom Departments of Meteorology and Computer Science University of Reading Reading United Kingdom Department of Science Technology Engineering and Public Policy University College London London United Kingdom Department of Anaesthesia University College London Hospital London United Kingdom Centre for Extragalactic Astronomy Durham University Durham United Kingdom Department of Mathematical Sciences Durham University DurhamDH1 3LE United Kingdom Institute for Hazard Risk & Resilience Durham University DurhamDH1 3LE United Kingdom Clinical Operational Research Unit University College London United Kingdom
With high levels of the Delta variant of COVID-19 circulating in England during September 2021, schools are set to reopen with few school-based non-pharmaceutical interventions (NPIs). In this paper, we present simula... 详细信息
来源: 评论
Minimalistic attacks: How little it takes to fool deep reinforcement learning policies
arXiv
收藏 引用
arXiv 2019年
作者: Qu, Xinghua Sun, Zhu Ong, Yew Soon Wei, Pengfei Gupta, Abhishek Computational Intelligence Lab School of Computer Science and Engineering Nanyang Technological University Singapore639798 Singapore School of Electrical and Electronic Engineering Nanyang Technological University Singapore639798 Singapore Data Science and Artificial Intelligence Research Centre School of Computer Science and Engineering Nanyang Technological University Singapore639798 Singapore Department of Computer Science National University of Singapore Singapore119077 Singapore A*STAR Singapore138634 Singapore
—Recent studies have revealed that neural network based policies can be easily fooled by adversarial examples. However, while most prior works analyze the effects of perturbing every pixel of every frame assuming whi... 详细信息
来源: 评论
Decoding of visual-related information from the human EEG using an end-to-end deep learning approach
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Lingling Chan, Leanne Lai Hang Lu, Yao University of Minnesota Department of Electrical Engineering City University of Hong Kong HKSAR China School of Data and Computer Science and Guangdong Province Key Laboratory of Computational Science Sun Yat-Sen University Guangzhou China
There is increasing interest in using deep learning approach for EEG analysis as there are still rooms for the improvement of EEG analysis in its accuracy. Convolutional long short-term (CNNLSTM) has been successfully... 详细信息
来源: 评论
Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Jin Feng, Fan Marti-Puig, Pere Caiafa, Cesar F. Sun, Zhe Duan, Feng Solé-Casals, Jordi College of Computer Science Nankai University Tianjin300071 China College of Artificial Intelligence Nankai University Tianjin300350 China Data and Signal Processing Group University of Vic—Central University of Catalonia Catalonia Vic08500 Spain Instituto Argentino de Radioastronomía CONICET CCT La Plata CIC-PBA UNLP V. Elisa1894 Argentina Tensor Learning Team Center for Advanced Intelligence Project RIKEN Tokyo103-0027 Japan Computational Engineering Applications Unit Head Office for Information Systems and Cybersecurity RIKEN Saitama351-0198 Japan
Empirical mode decomposition (EMD) has developed into a prominent tool for adaptive, scale-based signal analysis in various fields like robotics, security and biomedical engineering. Since the dramatic increase in amo... 详细信息
来源: 评论
An Open-Source Knowledge Graph Ecosystem for the Life sciences
arXiv
收藏 引用
arXiv 2023年
作者: Callahan, Tiffany J. Tripodi, Ignacio J. Stefanski, Adrianne L. Cappelletti, Luca Taneja, Sanya B. Wyrwa, Jordan M. Casiraghi, Elena Matentzoglu, Nicolas A. Reese, Justin Silverstein, Jonathan C. Hoyt, Charles Tapley Boyce, Richard D. Malec, Scott A. Unni, Deepak R. Joachimiak, Marcin P. Robinson, Peter N. Mungall, Christopher J. Cavalleri, Emanuele Fontana, Tommaso Valentini, Giorgio Mesiti, Marco Gillenwater, Lucas A. Santangelo, Brook Vasilevsky, Nicole A. Hoehndorf, Robert Bennett, Tellen D. Ryan, Patrick B. Hripcsak, George Kahn, Michael G. Bada, Michael Baumgartner, William A. Hunter, Lawrence E. Computational Bioscience Program University of Colorado Anschutz Medical Campus AuroraCO80045 United States Department of Biomedical Informatics Columbia University Irving Medical Center New YorkNY10032 United States Computer Science Department Interdisciplinary Quantitative Biology University of Colorado Boulder BoulderCO80301 United States AnacletoLab Computer Science Department University of Milan 20122 Italy Intelligent Systems Program University of Pittsburgh PittsburghPA15260 United States Department of Physical Medicine and Rehabilitation School of Medicine University of Colorado Anschutz Medical Campus AuroraCO80045 United States Division of Environmental Genomics and Systems Biology Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Semanticly Ltd Athens Greece Department of Biomedical Informatics University of Pittsburgh School of Medicine PittsburghPA15206 United States Laboratory of Systems Pharmacology Harvard Medical School BostonMA02115 United States Division of Translational Informatics University of New Mexico School of Medicine AlbuquerqueNM87131 United States SIB Swiss Institute of Bioinformatics Basel Switzerland Berlin Institute of Health at Charité-Universitatsmedizin Berlin10117 Germany ELLIS European Laboratory for Learning and Intelligent Systems Germany Department of Biomedical Informatics University of Colorado School of Medicine AuroraCO80045 United States Data Collaboration Center Critical Path Institute 1840 E River Rd. Suite 100 TucsonAZ85718 United States Computer Electrical and Mathematical Sciences & Engineering Division Computational Bioscience Research Center King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Department of Pediatrics University of Colorado School of Medicine AuroraCO80045 United States Janssen Research and Development RaritanNJ08869 United States Division of General Internal Medicine University of Colorado School of Medicine A
Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significa... 详细信息
来源: 评论
GIscience in the Era of Artificial Intelligence: A Research Agenda Towards Autonomous GIS
arXiv
收藏 引用
arXiv 2025年
作者: Li, Zhenlong Ning, Huan Gao, Song Janowicz, Krzysztof Li, Wenwen Arundel, Samantha T. Yang, Chaowei Bhaduri, Budhendra Wang, Shaowen Zhu, A. Xing Gahegan, Mark Shekhar, Shashi Ye, Xinyue McKenzie, Grant Cervone, Guido Hodgson, Michael E. Geoinformation and Big Data Research Lab Department of Geography The Pennsylvania State University University ParkPA United States Department of Geography University of Wisconsin – Madison WI United States STKO Lab Department of Geography and Regional Research University of Vienna Vienna Austria Spatial Analysis Research Center School of Geographical Sciences and Urban Planning Arizona State University AZ United States Center of Excellence for Geospatial Information Science U.S. Geological Survey VA United States NSF Spatiotemporal Innovation Center Department of Geography & Geoinformation Science George Mason University VA United States TN United States CyberGIS Center for Advanced Digital and Spatial Studies Department of Geography and Geographic Information Science University of Illinois Urbana-Champaign IL United States School of Computer Science University of Auckland New Zealand Department of Computer Science & Engineering University of Minnesota MN United States Department of Landscape Architecture & Urban Planning Center for Geospatial Sciences Applications & Technology Texas A&M University TX United States Platial Analysis Lab Department of Geography McGill University Quebec Canada Institute for Computational and Data Sciences Department of Geography The Pennsylvania State University University ParkPA United States Department of Geography University of South Carolina SC United States
The advent of generative AI exemplified by large language models (LLMs) opens new ways to represent and compute geographic information and transcends the process of geographic knowledge production, driving geographic ... 详细信息
来源: 评论
Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991-2020)
arXiv
收藏 引用
arXiv 2020年
作者: Alizadehsani, Roohallah Roshanzamir, Mohamad Hussain, Sadiq Khosravi, Abbas Koohestani, Afsaneh Zangooei, Mohammad Hossein Abdar, Moloud Beykikhoshk, Adham Shoeibi, Afshin Zare, Assef Panahiazar, Maryam Nahavandi, Saeid Srinivasan, Dipti Atiya, Amir F. Acharya, U. Rajendra Deakin University Geelong Australia Department of Engineering Fasa Branch Islamic Azad University Post Box No 364 Fasa Fars*** Iran System Administrator Dibrugarh University Assam786004 India University of Texas Dallas United States Applied Artificial Intelligence Institute Deakin University Geelong Australia Computer Engineering Department Ferdowsi University of Mashhad Mashhad Iran Faculty of Electrical and Computer Engineering Biomedical Data Acquisition Lab K. N. Toosi University of Technology Tehran Iran Faculty of Electrical Engineering Gonabad Branch Islamic Azad University Gonabad Iran Institute for Computational Health Sciences University of California San Francisco United States Dept. of Electrical and Computer Engineering National University of Singapore Singapore117576 Singapore Department of Computer Engineering Faculty of Engineering Cairo University Cairo12613 Egypt Department of Electronics and Computer Engineering Ngee Ann Polytechnic Singapore Singapore Department of Biomedical Engineering School of Science and Technology Singapore University of Social Sciences Singapore Department of Bioinformatics and Medical Engineering Asia University Taiwan
Understanding data and reaching valid conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have widespread application for this purpose in different f... 详细信息
来源: 评论
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
arXiv
收藏 引用
arXiv 2023年
作者: Eastman, Peter Galvelis, Raimondas Peláez, Raúl P. Abreu, Charlles R.A. Farr, Stephen E. Gallicchio, Emilio Gorenko, Anton Henry, Michael M. Hu, Frank Huang, Jing Krämer, Andreas Michel, Julien Mitchell, Joshua A. Pande, Vijay S. Rodrigues, João P.G.L.M. Rodriguez-Guerra, Jaime Simmonett, Andrew C. Singh, Sukrit Swails, Jason Turner, Philip Wang, Yuanqing Zhang, Ivy Chodera, John D. De Fabritiis, Gianni Markland, Thomas E. Department of Chemistry Stanford University StanfordCA94305 United States Acellera Labs C Dr Trueta 183 Barcelona08005 Spain C Dr. Aiguader 88 Barcelona08003 Spain Chemical Engineering Department School of Chemistry Federal University of Rio de Janeiro Rio de Janeiro68542 Brazil Redesign Science Inc. 180 Varick St. New YorkNY10014 United States EaStCHEM School of Chemistry University of Edinburgh EH9 3FJ United Kingdom Department of Chemistry and Biochemistry Brooklyn College The City University of New York NY United States Ph.D. Program in Chemistry Ph.D. Program in Biochemistry The Graduate Center of the City University of New York New YorkNY United States Stream HPC Koningin Wilhelminaplein 1 - 40601 Amsterdam1062 HG Netherlands Computational and Systems Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New YorkNY10065 United States Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Zhejiang Hangzhou310024 China Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 12 Berlin14195 Germany The Open Force Field Initiative Open Molecular Software Foundation DavisCA95616 United States Andreessen Horowitz 2865 Sand Hill Rd Menlo ParkCA94025 United States Department of Structural Biology Stanford University StanfordCA94305 United States Charité Universitätsmedizin Berlin In silico Toxicology and Structural Bioinformatics Virchowweg 6 Berlin10117 Germany Laboratory of Computational Biology National Heart Lung and Blood Institute National Institutes of Health BethesdaMD20892 United States Entos Inc. 9310 Athena Circle La Jolla CA92037 United States College of Engineering Virginia Polytechnic Institute State University BlacksburgVA24061 United States Simons Center for Computational Physical Chemistry Center for Data Science New York University 24 Waverly Place New YorkNY10004 United States T
Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbi... 详细信息
来源: 评论
Vec2SPARQL: Integrating SPARQL queries and knowledge graph embeddings  11
Vec2SPARQL: Integrating SPARQL queries and knowledge graph e...
收藏 引用
11th International Conference Semantic Web Applications and Tools for Life sciences, SWAT4LS 2018
作者: Kulmanov, Maxat Kafkas, Senay Karwath, Andreas Malic, Alexander Gkoutos, Georgios V Dumontier, Michel Hoehndorf, Robert Computer Electrical and Mathematical Science and Engineering Division Computational Bioscience Research Center King Abdullah University of Science and Technology Thuwal23955 Saudi Arabia Centre for Computational Biology University of Birmingham Birmingham United Kingdom Institute of Data Science Maastricht University Maastricht Netherlands
Recent developments in machine learning have led to a rise of large number of methods for extracting features from structured data. The features are represented as vectors and may encode for some semantic aspects of d... 详细信息
来源: 评论
Accommodating Information Priority Model in Cloudlet Environment  6th
收藏 引用
6th Australasian Symposium on Service Research and Innovation, ASSRI 2017
作者: Geumpana, Teuku Aulia Rabhi, Fethi Zhu, Liming School of Computer Science and Engineering The University of New South Wales Sydney2052 Australia Data61 | CSIRO Software and Computational Systems Sydney2015 Australia
Massive amounts of data during disaster situations require timely collection and analysis for the emergency team to mitigate the impact of the disaster under challenging social-technical conditions. The absence of Int... 详细信息
来源: 评论