MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(...
详细信息
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(>1000 mV s^(−1))on-paper MSCs,mainly due to the reduced electrical conductance of MXene films deposited on ***,ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser *** a footprint area of only 20 mm^(2),the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm^(−2)and long cycle life(>95%capacitance retention after 10,000 cycles)at a high scan rate of 1000 mV s^(−1),outperforming most of the present on-paper ***,the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays,which can also be simultaneously charged/discharged at 1000 mV s^(−1),showing scalable capacitive *** heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics.
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
If adversaries were to obtain quantum computers in the future, their massive computing power would likely break existing security schemes. Since security is a continuous process, more substantial security schemes must...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the...
详细信息
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the owner to lose control of the *** a result,there are issues of intentional data leakage and tampering by third parties,and the private information contained in the data may lead to more significant ***,data is frequently maintained on multiple storage platforms,posing significant hurdles in terms of enlisting multiple parties to engage in data sharing while maintaining *** this work,we propose a new architecture for applying blockchains to data sharing and achieve efficient and reliable data sharing among heterogeneous *** design a new data sharing transaction mechanism based on the system architecture to protect the security of the raw data and the processing *** also design and implement a hybrid concurrency control protocol to overcome issues caused by the large differences in blockchain performance in our system and to improve the success rate of data sharing *** took Ethereum and Hyperledger Fabric as examples to conduct crossblockchain data sharing *** results show that our system achieves data sharing across heterogeneous blockchains with reasonable performance and has high scalability.
Federated Adversarial Learning (FAL) maintains the decentralization of adversarial training for data-driven innovations while allowing the collaborative training of a common model to protect privacy facilities. Before...
详细信息
Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal *** this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for various stag...
详细信息
Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal *** this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for various stages and then compares the difference between CSCR before as well as after treatment using different application *** approach,which was focused on image quality,improves medical image *** enhancement algorithm was implemented to improve the OCT image contrast and denoise purpose called Boosted Anisotropic Diffusion with an Unsharp Masking Filter(BADWUMF).The classifier used here is tofigure out whether the OCT image is a CSCR case or not.150 images are checked for this research work(75 abnormal from Optical Coherence Tomography Image Retinal Database,in-house clinical database,and 75 normal images).This article explicitly decides that the approaches suggested aid the ophthalmologist with the precise retinal analysis and hence the risk factors to be *** total precision is 90 percent obtained from the Two Class Support Vector Machine(TCSVM)classifier and 93.3 percent is obtained from Shallow Neural Network with the Powell-Beale(SNNWPB)classifier using the MATLAB 2019a program.
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
Evaluation system of small arms firing has an important effect in the context of military domain. A partially automated evaluation system has been conducted and performed at the ground level. Automation of such system...
详细信息
Evaluation system of small arms firing has an important effect in the context of military domain. A partially automated evaluation system has been conducted and performed at the ground level. Automation of such system with the inclusion of artificial intelligence is a much required process. This papers puts focus on designing and developing an AI-based small arms firing evaluation systems in the context of military environment. Initially image processing techniques are used to calculate the target firing score. Additionally, firing errors during the shooting have also been detected using a machine learning algorithm. However, consistency in firing requires an abundance of practice and updated analysis of the previous results. Accuracy and precision are the basic requirements of a good shooter. To test the shooting skill of combatants, firing practices are held by the military personnel at frequent intervals that include 'grouping' and 'shoot to hit' scores. Shortage of skilled personnel and lack of personal interest leads to an inefficient evaluation of the firing standard of a firer. This paper introduces a system that will automatically be able to fetch the target data and evaluate the standard based on the fuzzy *** it will be able to predict the shooter performance based on linear regression ***, it compares with recognized patterns to analyze the individual expertise and suggest improvements based on previous values. The paper is developed on a Small Arms Firing Skill Evaluation System, which makes the whole process of firing and target evaluation faster with better accuracy. The experiment has been conducted on real-time scenarios considering the military field and shows a promising result to evaluate the system automatically.
This work introduces a novel Custom Question Answering (CQA) model leveraging Adam optimized Bidirectional Encoder Representations from Transformers (BERT-AO). This model tackles the challenge of combining textual and...
详细信息
暂无评论