Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
The agricultural area has undergone a significant transformation owing to the progress made in IoT. It is imperative to have a dependable remote monitoring solution right now. This study aims to accomplish two goals. ...
详细信息
Research on real-time data visualization methods is necessary to achieve the most accurate and clear representation of information. Creating specific boards and modifying current platforms are two key tasks in perform...
详细信息
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in differe...
详细信息
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental *** propose a robust FLC with low computational complexity by reducing the number of membership functions and *** optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the *** evaluate the proposed FLC in various panel configurations under different environmental *** results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios.
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data *** consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)*** user centric deployment of mmWave SBSs inevitably incurs correlation between UE and *** a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave *** using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power *** UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy *** also provide Monte Carlo simulation results to validate the accuracy of the derived ***,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave *** results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-execute...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-executes a subset of relevant tests that are impacted by code modifications. Previous studies on static and dynamic RTS for Java software have shown that selecting tests at the class level is more effective than using finer granularities like methods or statements. Nevertheless, RTS at the package level, which is a coarser granularity than class level, has not been thoroughly investigated or evaluated for Java projects. To address this gap, we propose PKRTS, a static package-level RTS approach that utilizes the structural dependencies of the software system under test to construct a package-level dependency graph. PKRTS analyzes dependencies in the graph and identifies relevant tests that can reach modified packages, i.e., packages containing altered classes. In contrast to conventional static RTS techniques, PKRTS implicitly considers dynamic dependencies, such as Java reflection and virtual method calls, among classes belonging to the same package by treating all those classes as a single cohesive node in the dependency graph. We evaluated PKRTS on 885 revisions of 9 open-source Java projects, with its performance compared to Ekstazi, a state-of-the-art dynamic class-level approach, and STARTS, a state-of-the-art static class-level approach. We used Ekstazi as the baseline to measure the safety and precision violations of PKRTS and STARTS. The results indicated that PKRTS outperformed static class-level RTS in terms of safety violation, which measures the extent to which relevant test cases are missed. PKRTS showed an average safety violation of 2.29% compared to 5.94% safety violation of STARTS. Despite this, PKRTS demonstrated lower precision violation and lower reduction in test suite size than class-level RTS, as it selects higher number of irrelevant te
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairne...
详细信息
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairness,and energy efficiency(EE).However,in conventional NOMA networks,performance degradation still exists because of the stochastic behavior of wireless *** combat this challenge,the concept of Intelligent Reflecting Surface(IRS)has risen to prominence as a low-cost intelligent solution for Beyond 5G(B5G)*** this paper,a modeling primer based on the integration of these two cutting-edge technologies,i.e.,IRS and NOMA,for B5G wireless networks is *** in-depth comparative analysis of IRS-assisted Power Domain(PD)-NOMA networks is provided through 3-fold ***,a primer is presented on the system architecture of IRS-enabled multiple-configuration PD-NOMA systems,and parallels are drawn with conventional network configurations,i.e.,conventional NOMA,Orthogonal Multiple Access(OMA),and IRS-assisted OMA *** by this,a comparative analysis of these network configurations is showcased in terms of significant performance metrics,namely,individual users'achievable rate,sum rate,ergodic rate,EE,and outage ***,for multi-antenna IRS-enabled NOMA networks,we exploit the active Beamforming(BF)technique by employing a greedy algorithm using a state-of-the-art branch-reduceand-bound(BRB)*** optimality of the BRB algorithm is presented by comparing it with benchmark BF techniques,i.e.,minimum-mean-square-error,zero-forcing-BF,and ***,we present an outlook on future envisioned NOMA networks,aided by IRSs,i.e.,with a variety of potential applications for 6G wireless *** work presents a generic performance assessment toolkit for wireless networks,focusing on IRS-assisted NOMA *** comparative analysis provides a solid foundation for the dev
Most Personalized Federated Learning (PFL) algorithms merge the model parameters of each client with other (similar or generic) model parameters to optimize the personalized model (PM). However, the merged model param...
详细信息
In the digital world, text data is produced in an unstructured manner across various communication channels. Extracting valuable information from such data with security is crucial and requires the development of tech...
详细信息
作者:
Petkar, Taniya G.Kumar, PraveenSarate, Kirtiksha U.
Faculty of Engineering and Technology Department of Computer Science & Medical Engineering Maharashtra Sawangi Wardha442001 India
Faculty of Engineering and Technology Department of Computer Science and Design Maharashtra Sawangi Wardha442001 India
By enabling precise, individualized, and effective treatments, the integration of artificial intelligence (AI) and machine learning (ML) into wound and skin healing is revolutionizing healthcare. Artificial intelligen...
详细信息
暂无评论