作者:
Warbhe, Mohan K.Bore, Joy JordanChaudari, Shiv Nath
Faculty of Engineering and Technology Department of Computer Science and Design Maharashtra Sawangi Wardha442001 India
Faculty of Engineering and Technology Department of Computer Science and Medical Engineering MaharashtraSawangi Wardha442001 India
The proposed web application for tomato leaf disease detection exemplifies the transformative power of Artificial Intelligence and computer Vision in modern agriculture. Addressing the critical issue of early and accu...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled ...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled smart *** high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for ***,there is a high computation latency due to the presence of a remote cloud *** computing,which brings the computation close to the data source is introduced to overcome this *** an IoT-enabled smart city environment,one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay *** efficient resource allocation at the edge is helpful to address this *** this paper,an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation ***,we presented a three-layer network architecture for IoT-enabled smart ***,we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization *** Automata(LA)is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource *** extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.
Nowadays, Android-based devices such as smart phones, tablets, smart watches, and virtual reality headsets have found increasing use in our daily lives. Along with the development of various applications for these dev...
详细信息
Blood Glucose Monitoring levels are essential to the treatment of diabetes and must be done continuously. Patients often don't comply with conventional glucose monitoring techniques since they cause discomfort and...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area eve...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area even more difficult. This research presents an enhanced framework utilizing the Internet of Things (IoT) for ongoing monitoring, data gathering, and analysis to evaluate desertification patterns. The framework utilizes Bayesian Belief Networks (BBN) to categorize IoT data, while a low-latency processing method on edge computing platforms enables effective detection of desertification trends. The classified data is subsequently analyzed using an Artificial Neural Network (ANN) optimized with a Genetic Algorithm (GA) for forecasting decisions. Using cloud computing infrastructure, the ANN-GA model examines intricate data connections to forecast desertification risk elements. Moreover, the Autoregressive Integrated Moving Average (ARIMA) model is employed to predict desertification over varied time intervals. Experimental simulations illustrate the effectiveness of the suggested framework, attaining enhanced performance in essential metrics: Temporal Delay (103.68 s), Classification Efficacy—Sensitivity (96.44 %), Precision (95.56 %), Specificity (96.97 %), and F-Measure (96.69 %)—Predictive Efficiency—Accuracy (97.76 %) and Root Mean Square Error (RMSE) (1.95 %)—along with Reliability (93.73 %) and Stability (75 %). The results of classification effectiveness and prediction performance emphasize the framework's ability to detect high-risk zones and predict the severity of desertification. This innovative method improves the comprehension of desertification processes and encourages sustainable land management practices, reducing the socio-economic impacts of desertification and bolstering at-risk ecosystems. The results of the study hold considerable importance for enhancing regional efforts in combating desertification, ensuring food security, and formulatin
作者:
Satone, Aditya P.Daronde, Subodh
Faculty of Engineering and Technology Department of Computer Science and Medical Engineering Maharashtra Wardha442001 India
Faculty of Engineering and Technology Department of Biomedical Engineering Maharashtra Wardha442001 India
Due to the wealth of information accessible on many insurance issues, including travel and auto insurance, individuals are becoming more and more impacted by these kinds of insurance in today's society. But this t...
详细信息
作者:
Raut, YashasviChaudhri, Shiv Nath
Faculty of Engineering and Technology Department of Computer Science and Engineering Maharashtra India
Faculty of Engineering and Technology Department of Computer Science and Design Maharashtra India
Gas and biosensors are crucial in the modern healthcare system, enabling non-invasive monitoring and diagnosis of various medical conditions. These sensors are used in various applications, including smart home health...
详细信息
作者:
Raymond, DavidMankar, DivyaniGudadhe, Amit
Faculty of Engineering And Technology Department of Computer Science And Medical Engineering Maharashtra Wardha India
Faculty of Engineering And Technology Department of Basic Science And Humanities Maharashtra Wardha India
Artificial Intelligence (AI) has emerged as a disruptive force in the pharmaceutical industry, driving unprecedented breakthroughs across various domains. This article provides a comprehensive overview of the cutting-...
详细信息
Handwriting is a unique and significant human feature that distinguishes them from one *** are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for perso...
详细信息
Handwriting is a unique and significant human feature that distinguishes them from one *** are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for person identification through ***,such systems are susceptible to forgery,posing security *** response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or *** response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or *** innovative method is intricately designed,encompassing five distinct phases:data collection,preprocessing,feature extraction,significant feature selection,and *** key advancement lies in the creation of a novel dataset specifically tailored for Bengali handwriting(BHW),setting the foundation for our comprehensive ***-preprocessing,we embarked on an exhaustive feature extraction process,encompassing integration with kinematic,statistical,spatial,and composite *** meticulous amalgamation resulted in a robust set of 91 *** enhance the efficiency of our system,we employed an analysis of variance(ANOVA)F test and mutual information scores approach,meticulously selecting the most pertinent *** the identification phase,we harnessed the power of cutting-edge deep learning models,notably the Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM).These models underwent rigorous training and testing to accurately discern individuals based on their handwriting ***,our methodology introduces a groundbreaking hybrid model that synergizes CNN and BiLSTM,capitalizing on fine motor features for enhanced individual ***,our experimental results unde
暂无评论