Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing meth...
详细信息
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing methods only aim at learning network dynamic behaviors generated by a specific ordinary differential equation instance, resulting in ineffectiveness for new ones, and generally require dense *** observed data, especially from network emerging dynamics, are usually difficult to obtain, which brings trouble to model learning. Therefore, learning accurate network dynamics with sparse, irregularly-sampled,partial, and noisy observations remains a fundamental challenge. We introduce a new concept of the stochastic skeleton and its neural implementation, i.e., neural ODE processes for network dynamics(NDP4ND), a new class of stochastic processes governed by stochastic data-adaptive network dynamics, to overcome the challenge and learn continuous network dynamics from scarce observations. Intensive experiments conducted on various network dynamics in ecological population evolution, phototaxis movement, brain activity, epidemic spreading, and real-world empirical systems, demonstrate that the proposed method has excellent data adaptability and computational efficiency, and can adapt to unseen network emerging dynamics, producing accurate interpolation and extrapolation with reducing the ratio of required observation data to only about 6% and improving the learning speed for new dynamics by three orders of magnitude.
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Estimating hand pose is a challenge that has significantly benefited from using deep learning-based algorithms. This study area holds critical significance across various computer vision and robotics domains, includin...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
The cross-view matching of local image features is a fundamental task in visual localization and 3D *** study proposes FilterGNN,a transformer-based graph neural network(GNN),aiming to improve the matching efficiency ...
详细信息
The cross-view matching of local image features is a fundamental task in visual localization and 3D *** study proposes FilterGNN,a transformer-based graph neural network(GNN),aiming to improve the matching efficiency and accuracy of visual *** on high matching sparseness and coarse-to-fine covisible area detection,FilterGNN utilizes cascaded optimal graph-matching filter modules to dynamically reject outlier ***,we successfully adapted linear attention in FilterGNN with post-instance normalization support,which significantly reduces the complexity of complete graph learning from O(N2)to O(N).Experiments show that FilterGNN requires only 6%of the time cost and 33.3%of the memory cost compared with SuperGlue under a large-scale input size and achieves a competitive performance in various tasks,such as pose estimation,visual localization,and sparse 3D reconstruction.
Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter *** address this issue,based on the d...
详细信息
Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter *** address this issue,based on the deep forest algorithm and further integrating evolutionary ensemble learning methods,this paper proposes a novel Deep Adaptive Evolutionary Ensemble(DAEE)*** model introduces model diversity into the cascade layer,allowing it to adaptively adjust its structure to accommodate complex and evolving purchasing behavior ***,this paper optimizes the methods of obtaining feature vectors,enhancement vectors,and prediction results within the deep forest algorithm to enhance the model’s predictive *** demonstrate that the improved deep forest model not only possesses higher robustness but also shows an increase of 5.02%in AUC value compared to the baseline ***,its training runtime speed is 6 times faster than that of deep models,and compared to other improved models,its accuracy has been enhanced by 0.9%.
Wheat is the most widely grown crop in the world,and its yield is closely related to global food *** number of ears is important for wheat breeding and yield ***,automated wheat ear counting techniques are essential f...
详细信息
Wheat is the most widely grown crop in the world,and its yield is closely related to global food *** number of ears is important for wheat breeding and yield ***,automated wheat ear counting techniques are essential for breeding high-yield varieties and increasing grain ***,all existing methods require position-level annotation for training,implying that a large amount of labor is required for annotation,limiting the application and development of deep learning technology in the agricultural *** address this problem,we propose a count-supervised multiscale perceptive wheat counting network(CSNet,count-supervised network),which aims to achieve accurate counting of wheat ears using quantity *** particular,in the absence of location information,CSNet adopts MLP-Mixer to construct a multiscale perception module with a global receptive field that implements the learning of small target attention maps between wheat ear *** conduct comparative experiments on a publicly available global wheat head detection dataset,showing that the proposed count-supervised strategy outperforms existing position-supervised methods in terms of mean absolute error(MAE)and root mean square error(RMSE).This superior performance indicates that the proposed approach has a positive impact on improving ear counts and reducing labeling costs,demonstrating its great potential for agricultural counting *** code is available at .
In this article, we address the challenge of accurate 3D face reconstruction by proposing an enhanced architecture. We observe that using a single error calculation formula for the entire face leads to precise reconst...
详细信息
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system co...
详细信息
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system constraints in such scenarios, model predictive control(MPC) has demonstrated exceptional performance in complex multi-robot manipulation tasks involving multi-objective optimization with system constraints. However, in such scenarios, the substantial computational load required to solve the optimal control problem(OCP) at each triggering instant can lead to significant delays between state sampling and control application, hindering real-time performance. To address these challenges, this paper introduces a novel robust tube-based smooth MPC approach for two fundamental manipulation tasks: reaching a given target and tracking a reference trajectory. By predicting the successor state as the initial condition for imminent OCP solving, we can solve the forthcoming OCP ahead of time, alleviating delay effects. Additionally,we establish an upper bound for linearizing the original nonlinear system, reducing OCP complexity and enhancing response speed. Grounded in tube-based MPC theory, the recursive feasibility and closed-loop stability amidst constraints and disturbances are ensured. Empirical validation is provided through two numerical simulations and two real-world dexterous robot manipulation tasks, which shows that the seamless control input by our methods can effectively enhance the solving efficiency and control performance when compared to conventional time-triggered MPC strategies.
With the evolvement of the Internet of things(IoT), mobile edge computing(MEC) has emerged as a promising computing paradigm to support IoT data analysis and processing. In MEC for IoT, the differentiated requirements...
详细信息
With the evolvement of the Internet of things(IoT), mobile edge computing(MEC) has emerged as a promising computing paradigm to support IoT data analysis and processing. In MEC for IoT, the differentiated requirements on quality of service(QoS) have been growing rapidly, making QoS a multi-dimensional concept including several attributes, such as performance, dependability, energy efficiency, and economic factors. To guarantee the QoS of IoT applications, theories and techniques of multi-dimensional QoS evaluation and optimization have become important theoretical foundations and supporting technologies for the research and application of MEC for IoT,which have attracted significant attention from both academia and industry. This paper aims to survey the existing studies on multi-dimensional QoS evaluation and optimization of MEC for IoT, and provide insights and guidance for future research in this field. This paper summarizes the multi-dimensional and multi-attribute QoS metrics in Io T scenarios, and then several QoS evaluation methods are presented. For QoS optimization, the main research problems in this field are summarized, and optimization models as well as their corresponding solutions are elaborated. We take notice of the booming of edge intelligence in artificial intelligence-empowered Io T scenarios, and illustrate the new research topics and the state-of-the-art approaches related to QoS evaluation and optimization. We discuss the challenges and future research directions.
暂无评论