Utilizing interpolation techniques (IT) within reversible data hiding (RDH) algorithms presents the advantage of a substantial embedding capacity. Nevertheless, prevalent algorithms often straightforwardly embed confi...
详细信息
The agriculture sector plays an important role to the nation's economy, contributing significantly to GDP and employing a sizable section of the labour force. Nonetheless, precisely projecting food production and ...
详细信息
Trojan detection from network traffic data is crucial for safeguarding networks against covert infiltration and potential data breaches. Deep learning (DL) techniques can play a pivotal role in detecting trojans from ...
详细信息
IOUT (Internet of Underwater Things) relies on underwater acoustic sensors, which have limited resources such as battery power and bandwidth. The exchange of data among these sensors faces challenges like propagation ...
详细信息
IOUT (Internet of Underwater Things) relies on underwater acoustic sensors, which have limited resources such as battery power and bandwidth. The exchange of data among these sensors faces challenges like propagation delay, node displacement, and environmental errors, making network maintenance difficult. The objective of this study is to address the energy efficiency and performance issues in IOUT networks by proposing and evaluating an energy-efficient routing protocol called Efficient Cost Wakeup Routing Protocol (ECWRP). To achieve the objective, the study focuses on two key parameters: Cost and Duty Cycle. The Duty Cycle parameter helps in reducing undesirable impacts during underwater communications, improving the performance of the routing protocol. The Cost parameter is utilized to select the most efficient path for data transmission, considering factors such as transmitting power levels. The protocol is applied to a multi-hop mesh-based network. The proposed ECWRP routing protocol is assessed through simulations, demonstrating its superior efficiency compared to the Ride algorithm. By eliminating unnecessary handshaking and optimizing route selection, ECWRP significantly enhances energy efficiency and overall performance within the IoUT network. The study's findings on the enhanced energy efficiency and performance improvements achieved by the ECWRP protocol hold promising implications for the design and optimization of IoUT networks, paving the way for more sustainable and effective communication systems in underwater environments. In conclusion, the study demonstrates the effectiveness of the Efficient Cost Wakeup Routing Protocol (ECWRP) in enhancing energy efficiency and performance in multi-hop mesh-based IoUT networks. The protocol's utilization of the Duty Cycle parameter reduces undesirable impacts, while the Cost parameter enables the selection of the most efficient path for data transmission. The results confirm the superiority of the ECWRP protoc
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data, such as missing or noisy variables. Our approach builds on conformal prediction, a po...
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the a...
详细信息
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the adopted datasets for training have correct labeling information. However, such an assumption is not always valid as training data might include measurement samples that are incorrectly labeled as benign, namely, adversarial data poisoning samples, which have not been detected before. Neglecting such an aspect makes detectors susceptible to data poisoning. Our investigations revealed that detection rates (DRs) of existing detectors significantly deteriorate by up to 9-29% when subject to data poisoning in generalized and topology-specific settings. Thus, we propose a generalized graph neural network-based anomaly detector that is robust against FDIAs and data poisoning. It requires only benign datasets for training and employs an autoencoder with Chebyshev graph convolutional recurrent layers with attention mechanism to capture the spatial and temporal correlations within measurement data. The proposed convolutional recurrent graph autoencoder model is trained and tested on various topologies (from 14, 39, and 118-bus systems). Due to such factors, it yields stable generalized detection performance that is degraded by only 1.6-3.7% in DR against high levels of data poisoning and unseen FDIAs in unobserved topologies. Impact Statement-Artificial Intelligence (AI) systems are used in smart grids to detect cyberattacks. They can automatically detect malicious actions carried out bymalicious entities that falsifymeasurement data within power grids. Themajority of such systems are data-driven and rely on labeled data for model training and testing. However, datasets are not always correctly labeled since malicious entities might be carrying out cyberattacks without being detected, which leads to training on mislabeled datasets. Such actions might degrade the d
In recent years, face detection has emerged as a prominent research field within computer Vision (CV) and Deep Learning. Detecting faces in images and video sequences remains a challenging task due to various factors ...
详细信息
In recent years, face detection has emerged as a prominent research field within computer Vision (CV) and Deep Learning. Detecting faces in images and video sequences remains a challenging task due to various factors such as pose variation, varying illumination, occlusion, and scale differences. Despite the development of numerous face detection algorithms in deep learning, the Viola-Jones algorithm, with its simple yet effective approach, continues to be widely used in real-time camera applications. The conventional Viola-Jones algorithm employs AdaBoost for classifying faces in images and videos. The challenge lies in working with cluttered real-time facial images. AdaBoost needs to search through all possible thresholds for all samples to find the minimum training error when receiving features from Haar-like detectors. Therefore, this exhaustive search consumes significant time to discover the best threshold values and optimize feature selection to build an efficient classifier for face detection. In this paper, we propose enhancing the conventional Viola-Jones algorithm by incorporating Particle Swarm Optimization (PSO) to improve its predictive accuracy, particularly in complex face images. We leverage PSO in two key areas within the Viola-Jones framework. Firstly, PSO is employed to dynamically select optimal threshold values for feature selection, thereby improving computational efficiency. Secondly, we adapt the feature selection process using AdaBoost within the Viola-Jones algorithm, integrating PSO to identify the most discriminative features for constructing a robust classifier. Our approach significantly reduces the feature selection process time and search complexity compared to the traditional algorithm, particularly in challenging environments. We evaluated our proposed method on a comprehensive face detection benchmark dataset, achieving impressive results, including an average true positive rate of 98.73% and a 2.1% higher average prediction accura
Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the *** is often challenging for doc...
详细信息
Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the *** is often challenging for doctors to identify the exact model and manufacturer of the prosthesis when it is *** paper proposes a transfer learning-based class imbalance-aware prosthesis detection method to detect the implant’s manufacturer automatically from shoulder X-ray *** framework of the method proposes a novel training approach and a new set of batch-normalization,dropout,and fully convolutional layers in the head *** employs cyclical learning rates and weighting-based loss calculation *** modifications aid in faster convergence,avoid local-minima stagnation,and remove the training bias caused by imbalanced *** proposed method is evaluated using seven well-known pre-trained models of VGGNet,ResNet,and DenseNet *** is performed on a shoulder implant benchmark dataset consisting of 597 shoulder X-ray *** proposed method improves the classification performance of all pre-trained models by 10–12%.The DenseNet-201-based variant has achieved the highest classification accuracy of 89.5%,which is 10%higher than existing ***,to validate and generalize the proposed method,the existing baseline dataset is supplemented to six classes,including samples of two more implant *** results have shown average accuracy of 86.7%for the extended dataset and show the preeminence of the proposed method.
False Data Injection Attacks (FDIA) pose a significant threat to the stability of smart grids. Traditional Bad Data Detection (BDD) algorithms, deployed to remove low-quality data, can easily be bypassed by these atta...
详细信息
False Data Injection Attacks (FDIA) pose a significant threat to the stability of smart grids. Traditional Bad Data Detection (BDD) algorithms, deployed to remove low-quality data, can easily be bypassed by these attacks which require minimal knowledge about the parameters of the power bus systems. This makes it essential to develop defence approaches that are generic and scalable to all types of power systems. Deep learning algorithms provide state-of-the-art detection for FDIA while requiring no knowledge about system parameters. However, there are very few works in the literature that evaluate these models for FDIA detection at the level of an individual node in the power system. In this paper, we compare several recent deep learning-based model that proven their high performance and accuracy in detecting the exact location of the attack node, which are convolutional neural networks (CNN), Long Short-Term Memory (LSTM), attention-based bidirectional LSTM, and hybrid models. We, then, compare their performance with baseline multi-layer perceptron (MLP)., All the models are evaluated on IEEE-14 and IEEE-118 bus systems in terms of row accuracy (RACC), computational time, and memory space required for training the deep learning model. Each model was further investigated through a manual grid search to determine the optimal architecture of the deep learning model, including the number of layers and neurons in each layer. Based on the results, CNN model exhibited consistently high performance in very short training time. LSTM achieved the second highest accuracy;however, it had required an averagely higher training time. The attention-based LSTM model achieved a high accuracy of 94.53 during hyperparameter tuning, while the CNN model achieved a moderately lower accuracy with only one-fourth of the training time. Finally, the performance of each model was quantified on different variants of the dataset—which varied in their l2-norm. Based on the results, LSTM, CNN obta
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)a...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable *** data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network *** mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring *** unique determination of this study is the shortest path to reach *** the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static *** this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the *** methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide *** addition,a method of using MS scheduling for efficient data collection is *** simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
暂无评论