Heads-up computing aims to provide synergistic digital assistance that minimally interferes with users' on-the-go daily activities. Currently, the input modalities of heads-up computing are mainly voice and finger...
详细信息
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and *** address the limitations imposed by i...
详细信息
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and *** address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering *** various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time *** paper presents an approach based on state-of-the-art machine-learning *** this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data *** primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation *** evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop *** proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
Nowadays, Cloud Computing has attracted a lot of interest from both individual users and organization. However, cloud computing applications face certain security issues, such as data integrity, user privacy, and serv...
详细信息
The missing readings in various sensors of air pollution monitoring stations is a common issue. Those missing sensor readings may greatly influence the performance of monitoring and analysis of air pollution data. To ...
详细信息
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves(GFWs)generated by a membrane acoustic waveguide actuator(MAWA).By harnessing the potential of GFWs,cavity-agnos...
详细信息
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves(GFWs)generated by a membrane acoustic waveguide actuator(MAWA).By harnessing the potential of GFWs,cavity-agnostic advanced particle manipulation functions are achieved,unlocking new avenues for microfluidic systems and lab-on-a-chip *** localized acoustofluidic effects of GFWs arising from the evanescent nature of the acoustic fields they induce inside a liquid medium are numerically investigated to highlight their unique and promising *** traditional acoustofluidic technologies,the GFWs propagating on the MAWA’s membrane waveguide allow for cavity-agnostic particle manipulation,irrespective of the resonant properties of the fluidic ***,the acoustofluidic functions enabled by the device depend on the flexural mode populating the active region of the membrane *** demonstrations using two types of particles include in-sessile-droplet particle transport,mixing,and spatial separation based on particle diameter,along with streaming-induced counter-flow virtual channel generation in microfluidic PDMS *** experiments emphasize the versatility and potential applications of the MAWA as a microfluidic platform targeted at lab-on-a-chip development and showcase the MAWA’s compatibility with existing microfluidic systems.
Medical imaging, a cornerstone of disease diagnosis and treatment planning, faces the hurdles of subjective interpretation and reliance on specialized expertise. Deep learning algorithms show improvements in automatin...
详细信息
Image caption-generating systems aim to deliver accurate, coherent, and useful captions. This includes identifying the scene, items, relationships, and attributes of the image's objects. Due to constraints in usin...
详细信息
The transition from traditional energy or electrical grids to smart energy or electrical grids has significantly transformed energy management. This evolution emphasizes decentralization, efficiency, and sustainabilit...
详细信息
The transition from traditional energy or electrical grids to smart energy or electrical grids has significantly transformed energy management. This evolution emphasizes decentralization, efficiency, and sustainability in energy systems. However, it also introduces numerous risks, including cyber-physical system vulnerabilities and challenges in energy trading. The application of blockchain and Machine Learning (ML) offers potential solutions to these issues. Blockchain enhances energy transactions by making them safer, more transparent, and tamper-proof, while ML optimizes grid performance by improving predictions, fault detection, and anomaly identification. This systematic review examines the application of blockchain and ML in peer-to-peer (P2P) energy trading within smart grids and analyzes how these technologies complement each other in mitigating risks and enhancing the efficiency of smart grids. Blockchain enhances security by providing privacy for transactions and maintaining immutable records, while ML predicts market trends, identifies fraudulent activities, and ensures efficient energy use. The paper identifies critical challenges in smart grids, such as unsecured communication channels and vulnerabilities to cyber threats, and discusses how blockchain and ML address these issues. Furthermore, the study explores emerging trends, such as lightweight blockchain systems and edge computing, to overcome implementation challenges. A new architecture is proposed, integrating blockchain with ML algorithms to create resilient, secure, and efficient energy trading markets. The paper underscores the need for global standardization, improved cybersecurity measures, and further research into how blockchain and ML can revolutionize smart grids. This study integrates current knowledge with a forward-looking perspective, providing valuable insights for researchers, policymakers, and stakeholders in the energy sector to collaboratively build a future of efficient and int
We propose a method to reconstruct a personalized hand avatar, representing the user's hand shape and appearance, from a monocular RGB-D video of a hand performing unknown hand poses under unknown illumination. Ou...
详细信息
Adversarial attack is a method used to deceive machine learning models, which offers a technique to test the robustness of the given model, and it is vital to balance robustness with accuracy. Artificial intelligence ...
详细信息
暂无评论